Cargando…
TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images
SIMPLE SUMMARY: Microscopy is central to many areas of biomedical science research, including cancer research, and is critical for understanding basic pathophysiology, mechanisms of action, and treatment response. However, analysis of the numerous images generated from microscopy readouts is usually...
Autores principales: | Ceran, Yasin, Ergüder, Hamza, Ladner, Katherine, Korenfeld, Sophie, Deniz, Karina, Padmanabhan, Sanyukta, Wong, Phillip, Baday, Murat, Pengo, Thomas, Lou, Emil, Patel, Chirag B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562025/ https://www.ncbi.nlm.nih.gov/pubmed/36230881 http://dx.doi.org/10.3390/cancers14194958 |
Ejemplares similares
-
Treatment with tumor-treating fields (TTFields) suppresses intercellular tunneling nanotube formation in vitro and upregulates immuno-oncologic biomarkers in vivo in malignant mesothelioma
por: Sarkari, Akshat, et al.
Publicado: (2023) -
Tunneling Nanotubes between Cells Migrating in ECM Mimicking Fibrous Environments
por: Jana, Aniket, et al.
Publicado: (2022) -
Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives
por: Sahan, Ayse Z., et al.
Publicado: (2022) -
The Novel Roles of Connexin Channels and Tunneling Nanotubes in Cancer Pathogenesis
por: Valdebenito, Silvana, et al.
Publicado: (2018) -
Inception Mechanisms of Tunneling Nanotubes
por: Drab, Mitja, et al.
Publicado: (2019)