Cargando…
Monitoring and early warning of a metal mine tailings pond based on a deep learning bidirectional recurrent long and short memory network
The effective monitoring and early warning capability of metal mine tailings ponds can improve the associated safety risk management level. The infiltration line is an important core index of tailings pond stability. In this paper, a tailings pond monitoring and early warning system, which provides...
Autores principales: | Jing, Zhanjie, Gao, Xiaohong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562152/ https://www.ncbi.nlm.nih.gov/pubmed/36227890 http://dx.doi.org/10.1371/journal.pone.0273073 |
Ejemplares similares
-
Evaluation of soil heavy metals pollution and the phytoremediation potential of copper-nickel mine tailings ponds
por: Shi, Jianfei, et al.
Publicado: (2023) -
Risk Assessment of Heavy Metal in Farmlands and Crops Near Pb–Zn Mine Tailing Ponds in Niujiaotang, China
por: Li, Qinyuan, et al.
Publicado: (2023) -
Deep Feature Mining via the Attention-Based Bidirectional Long Short Term Memory Graph Convolutional Neural Network for Human Motor Imagery Recognition
por: Hou, Yimin, et al.
Publicado: (2022) -
Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China
por: Liu, Renzhi, et al.
Publicado: (2015) -
Assessment of Lead (Pb) Leakage From Abandoned Mine Tailing Ponds to Klity Creek, Kanchanaburi Province, Thailand
por: Srirattana, Supawan, et al.
Publicado: (2021)