Cargando…
A deep-learning approach for automatically detecting gait-events based on foot-marker kinematics in children with cerebral palsy—Which markers work best for which gait patterns?
Neuromotor pathologies often cause motor deficits and deviations from typical locomotion, reducing the quality of life. Clinical gait analysis is used to effectively classify these motor deficits to gain deeper insights into resulting walking behaviours. To allow the ensemble averaging of spatio-tem...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562216/ https://www.ncbi.nlm.nih.gov/pubmed/36227847 http://dx.doi.org/10.1371/journal.pone.0275878 |
_version_ | 1784808121156239360 |
---|---|
author | Kim, Yong Kuk Visscher, Rosa M. S. Viehweger, Elke Singh, Navrag B. Taylor, William R. Vogl, Florian |
author_facet | Kim, Yong Kuk Visscher, Rosa M. S. Viehweger, Elke Singh, Navrag B. Taylor, William R. Vogl, Florian |
author_sort | Kim, Yong Kuk |
collection | PubMed |
description | Neuromotor pathologies often cause motor deficits and deviations from typical locomotion, reducing the quality of life. Clinical gait analysis is used to effectively classify these motor deficits to gain deeper insights into resulting walking behaviours. To allow the ensemble averaging of spatio-temporal metrics across individuals during walking, gait events, such as initial contact (IC) or toe-off (TO), are extracted through either manual annotation based on video data, or through force thresholds using force plates. This study developed a deep-learning long short-term memory (LSTM) approach to detect IC and TO automatically based on foot-marker kinematics of 363 cerebral palsy subjects (age: 11.8 ± 3.2). These foot-marker kinematics, including 3D positions and velocities of the markers located on the hallux (HLX), calcaneus (HEE), distal second metatarsal (TOE), and proximal fifth metatarsal (PMT5), were extracted retrospectively from standard barefoot gait analysis sessions. Different input combinations of these four foot-markers were evaluated across three gait subgroups (IC with the heel, midfoot, or forefoot). For the overall group, our approach detected 89.7% of ICs within 16ms of the true event with a 18.5% false alarm rate. For TOs, only 71.6% of events were detected with a 33.8% false alarm rate. While the TOE|HEE marker combination performed well across all subgroups for IC detection, optimal performance for TO detection required different input markers per subgroup with performance differences of 5-10%. Thus, deep-learning LSTM based detection of IC events using the TOE|HEE markers offers an automated alternative to avoid operator-dependent and laborious manual annotation, as well as the limited step coverage and inability to measure assisted walking for force plate-based detection of IC events. |
format | Online Article Text |
id | pubmed-9562216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-95622162022-10-15 A deep-learning approach for automatically detecting gait-events based on foot-marker kinematics in children with cerebral palsy—Which markers work best for which gait patterns? Kim, Yong Kuk Visscher, Rosa M. S. Viehweger, Elke Singh, Navrag B. Taylor, William R. Vogl, Florian PLoS One Research Article Neuromotor pathologies often cause motor deficits and deviations from typical locomotion, reducing the quality of life. Clinical gait analysis is used to effectively classify these motor deficits to gain deeper insights into resulting walking behaviours. To allow the ensemble averaging of spatio-temporal metrics across individuals during walking, gait events, such as initial contact (IC) or toe-off (TO), are extracted through either manual annotation based on video data, or through force thresholds using force plates. This study developed a deep-learning long short-term memory (LSTM) approach to detect IC and TO automatically based on foot-marker kinematics of 363 cerebral palsy subjects (age: 11.8 ± 3.2). These foot-marker kinematics, including 3D positions and velocities of the markers located on the hallux (HLX), calcaneus (HEE), distal second metatarsal (TOE), and proximal fifth metatarsal (PMT5), were extracted retrospectively from standard barefoot gait analysis sessions. Different input combinations of these four foot-markers were evaluated across three gait subgroups (IC with the heel, midfoot, or forefoot). For the overall group, our approach detected 89.7% of ICs within 16ms of the true event with a 18.5% false alarm rate. For TOs, only 71.6% of events were detected with a 33.8% false alarm rate. While the TOE|HEE marker combination performed well across all subgroups for IC detection, optimal performance for TO detection required different input markers per subgroup with performance differences of 5-10%. Thus, deep-learning LSTM based detection of IC events using the TOE|HEE markers offers an automated alternative to avoid operator-dependent and laborious manual annotation, as well as the limited step coverage and inability to measure assisted walking for force plate-based detection of IC events. Public Library of Science 2022-10-13 /pmc/articles/PMC9562216/ /pubmed/36227847 http://dx.doi.org/10.1371/journal.pone.0275878 Text en © 2022 Kim et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kim, Yong Kuk Visscher, Rosa M. S. Viehweger, Elke Singh, Navrag B. Taylor, William R. Vogl, Florian A deep-learning approach for automatically detecting gait-events based on foot-marker kinematics in children with cerebral palsy—Which markers work best for which gait patterns? |
title | A deep-learning approach for automatically detecting gait-events based on foot-marker kinematics in children with cerebral palsy—Which markers work best for which gait patterns? |
title_full | A deep-learning approach for automatically detecting gait-events based on foot-marker kinematics in children with cerebral palsy—Which markers work best for which gait patterns? |
title_fullStr | A deep-learning approach for automatically detecting gait-events based on foot-marker kinematics in children with cerebral palsy—Which markers work best for which gait patterns? |
title_full_unstemmed | A deep-learning approach for automatically detecting gait-events based on foot-marker kinematics in children with cerebral palsy—Which markers work best for which gait patterns? |
title_short | A deep-learning approach for automatically detecting gait-events based on foot-marker kinematics in children with cerebral palsy—Which markers work best for which gait patterns? |
title_sort | deep-learning approach for automatically detecting gait-events based on foot-marker kinematics in children with cerebral palsy—which markers work best for which gait patterns? |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562216/ https://www.ncbi.nlm.nih.gov/pubmed/36227847 http://dx.doi.org/10.1371/journal.pone.0275878 |
work_keys_str_mv | AT kimyongkuk adeeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT visscherrosams adeeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT viehwegerelke adeeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT singhnavragb adeeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT taylorwilliamr adeeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT voglflorian adeeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT kimyongkuk deeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT visscherrosams deeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT viehwegerelke deeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT singhnavragb deeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT taylorwilliamr deeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns AT voglflorian deeplearningapproachforautomaticallydetectinggaiteventsbasedonfootmarkerkinematicsinchildrenwithcerebralpalsywhichmarkersworkbestforwhichgaitpatterns |