Cargando…
Low functional vulnerability of fish assemblages to coral loss in Southwestern Atlantic marginal reefs
Marginal reefs sustain coral assemblages under conditions considered suboptimal for most corals, resulting in low coral abundance. These reefs are inhabited by numerous fishes with a generally unknown degree of association with corals that might lead to the assumption that corals play minor roles in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562355/ https://www.ncbi.nlm.nih.gov/pubmed/36229468 http://dx.doi.org/10.1038/s41598-022-20919-9 |
Sumario: | Marginal reefs sustain coral assemblages under conditions considered suboptimal for most corals, resulting in low coral abundance. These reefs are inhabited by numerous fishes with a generally unknown degree of association with corals that might lead to the assumption that corals play minor roles in determining fish occurrence, when corals could be actually sustaining diverse and resilient assemblages. Using site-occupancy models fitted to data of 113 reef fish species of different life stages (adults and juveniles) from 36 reefs distributed across the Southwestern Atlantic (0.87–27.6°S) we first assessed fish assemblage’s response to coral and turf algal cover, and identified coral-associated fish. Then, we simulated the loss of coral-associated fishes and contrasted it with random losses, providing inferences on the resilience of fish assemblage’s functional trait space to species loss. The entire fish assemblage responded more positively to coral than to turf algae, with 42 (37%) species being identified as coral-associated fish. The simulated loss of coral-associated fish reduced up to 5% the functional trait space and was not different from the random loss. These results reveal that marginal reefs of Southwestern Atlantic reefs host resilient fish assemblages that might preserve fundamental ecological functions and ecosystem services even with coral declines. |
---|