Cargando…
Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks
PURPOSE: Generative adversarial networks (GANs) are deep learning (DL) models that can create and modify realistic-appearing synthetic images, or deepfakes, from real images. The purpose of our study was to evaluate the ability of experts to discern synthesized retinal fundus images from real fundus...
Autores principales: | Chen, Jimmy S., Coyner, Aaron S., Chan, R.V. Paul, Hartnett, M. Elizabeth, Moshfeghi, Darius M., Owen, Leah A., Kalpathy-Cramer, Jayashree, Chiang, Michael F., Campbell, J. Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562356/ https://www.ncbi.nlm.nih.gov/pubmed/36246951 http://dx.doi.org/10.1016/j.xops.2021.100079 |
Ejemplares similares
-
Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis
por: Coyner, Aaron S., et al.
Publicado: (2022) -
Deepfake attack prevention using steganography GANs
por: Noreen, Iram, et al.
Publicado: (2022) -
Federated Learning for Microvasculature Segmentation and Diabetic Retinopathy Classification of OCT Data
por: Lo, Julian, et al.
Publicado: (2021) -
Deepfake video detection: YOLO-Face convolution recurrent approach
por: Ismail, Aya, et al.
Publicado: (2021) -
Deepfake tweets classification using stacked Bi-LSTM and words embedding
por: Rupapara, Vaibhav, et al.
Publicado: (2021)