Cargando…

Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening

Current non-invasive prenatal screening (NIPS) analyzes circulating fetal cell-free DNA (cfDNA) in maternal peripheral blood for selected aneuploidies or microdeletion/duplication syndromes. Many genetic disorders are refractory to NIPS largely because the maternal genetic material constitutes most...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Chenming, Li, Jianli, Chen, Songchang, Cai, Xiaoqiang, Jing, Ruilin, Qin, Xiaomei, Pan, Dong, Zhao, Xin, Ma, Dongyang, Xu, Xiufeng, Liu, Xiaojun, Wang, Can, Yang, Bingxin, Zhang, Lanlan, Li, Shuyuan, Chen, Yiyao, Pan, Nina, Tang, Ping, Song, Jieping, Liu, Nian, Zhang, Chen, Zhang, Zhiwei, Qiu, Xiang, Lu, Weiliang, Ying, Chunmei, Li, Xiaotian, Xu, Congjian, Wang, Yanlin, Wu, Yanting, Huang, He-Feng, Zhang, Jinglan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562363/
https://www.ncbi.nlm.nih.gov/pubmed/36229437
http://dx.doi.org/10.1038/s41421-022-00457-4
_version_ 1784808155622932480
author Xu, Chenming
Li, Jianli
Chen, Songchang
Cai, Xiaoqiang
Jing, Ruilin
Qin, Xiaomei
Pan, Dong
Zhao, Xin
Ma, Dongyang
Xu, Xiufeng
Liu, Xiaojun
Wang, Can
Yang, Bingxin
Zhang, Lanlan
Li, Shuyuan
Chen, Yiyao
Pan, Nina
Tang, Ping
Song, Jieping
Liu, Nian
Zhang, Chen
Zhang, Zhiwei
Qiu, Xiang
Lu, Weiliang
Ying, Chunmei
Li, Xiaotian
Xu, Congjian
Wang, Yanlin
Wu, Yanting
Huang, He-Feng
Zhang, Jinglan
author_facet Xu, Chenming
Li, Jianli
Chen, Songchang
Cai, Xiaoqiang
Jing, Ruilin
Qin, Xiaomei
Pan, Dong
Zhao, Xin
Ma, Dongyang
Xu, Xiufeng
Liu, Xiaojun
Wang, Can
Yang, Bingxin
Zhang, Lanlan
Li, Shuyuan
Chen, Yiyao
Pan, Nina
Tang, Ping
Song, Jieping
Liu, Nian
Zhang, Chen
Zhang, Zhiwei
Qiu, Xiang
Lu, Weiliang
Ying, Chunmei
Li, Xiaotian
Xu, Congjian
Wang, Yanlin
Wu, Yanting
Huang, He-Feng
Zhang, Jinglan
author_sort Xu, Chenming
collection PubMed
description Current non-invasive prenatal screening (NIPS) analyzes circulating fetal cell-free DNA (cfDNA) in maternal peripheral blood for selected aneuploidies or microdeletion/duplication syndromes. Many genetic disorders are refractory to NIPS largely because the maternal genetic material constitutes most of the total cfDNA present in the maternal plasma, which hinders the detection of fetus-specific genetic variants. Here, we developed an innovative sequencing method, termed coordinative allele-aware target enrichment sequencing (COATE-seq), followed by multidimensional genomic analyses of sequencing read depth, allelic fraction, and linked single nucleotide polymorphisms, to accurately separate the fetal genome from the maternal background. Analytical confounders including multiple gestations, maternal copy number variations, and absence of heterozygosity were successfully recognized and precluded for fetal variant analyses. In addition, fetus-specific genomic characteristics, including the cfDNA fragment length, meiotic error origins, meiotic recombination, and recombination breakpoints were identified which reinforced the fetal variant assessment. In 1129 qualified pregnancies tested, 54 fetal aneuploidies, 8 microdeletions/microduplications, and 8 monogenic variants were detected with 100% sensitivity and 99.3% specificity. Using the comprehensive cfDNA genomic analysis tools developed, we found that 60.3% of aneuploidy samples had aberrant meiotic recombination providing important insights into the mechanism underlying meiotic nondisjunctions. Altogether, we show that the genetic deconvolution of the fetal and maternal cfDNA enables thorough and accurate delineation of fetal genome which paves the way for the next-generation prenatal screening of essentially all types of human genetic disorders.
format Online
Article
Text
id pubmed-9562363
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Nature Singapore
record_format MEDLINE/PubMed
spelling pubmed-95623632022-10-15 Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening Xu, Chenming Li, Jianli Chen, Songchang Cai, Xiaoqiang Jing, Ruilin Qin, Xiaomei Pan, Dong Zhao, Xin Ma, Dongyang Xu, Xiufeng Liu, Xiaojun Wang, Can Yang, Bingxin Zhang, Lanlan Li, Shuyuan Chen, Yiyao Pan, Nina Tang, Ping Song, Jieping Liu, Nian Zhang, Chen Zhang, Zhiwei Qiu, Xiang Lu, Weiliang Ying, Chunmei Li, Xiaotian Xu, Congjian Wang, Yanlin Wu, Yanting Huang, He-Feng Zhang, Jinglan Cell Discov Article Current non-invasive prenatal screening (NIPS) analyzes circulating fetal cell-free DNA (cfDNA) in maternal peripheral blood for selected aneuploidies or microdeletion/duplication syndromes. Many genetic disorders are refractory to NIPS largely because the maternal genetic material constitutes most of the total cfDNA present in the maternal plasma, which hinders the detection of fetus-specific genetic variants. Here, we developed an innovative sequencing method, termed coordinative allele-aware target enrichment sequencing (COATE-seq), followed by multidimensional genomic analyses of sequencing read depth, allelic fraction, and linked single nucleotide polymorphisms, to accurately separate the fetal genome from the maternal background. Analytical confounders including multiple gestations, maternal copy number variations, and absence of heterozygosity were successfully recognized and precluded for fetal variant analyses. In addition, fetus-specific genomic characteristics, including the cfDNA fragment length, meiotic error origins, meiotic recombination, and recombination breakpoints were identified which reinforced the fetal variant assessment. In 1129 qualified pregnancies tested, 54 fetal aneuploidies, 8 microdeletions/microduplications, and 8 monogenic variants were detected with 100% sensitivity and 99.3% specificity. Using the comprehensive cfDNA genomic analysis tools developed, we found that 60.3% of aneuploidy samples had aberrant meiotic recombination providing important insights into the mechanism underlying meiotic nondisjunctions. Altogether, we show that the genetic deconvolution of the fetal and maternal cfDNA enables thorough and accurate delineation of fetal genome which paves the way for the next-generation prenatal screening of essentially all types of human genetic disorders. Springer Nature Singapore 2022-10-13 /pmc/articles/PMC9562363/ /pubmed/36229437 http://dx.doi.org/10.1038/s41421-022-00457-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Xu, Chenming
Li, Jianli
Chen, Songchang
Cai, Xiaoqiang
Jing, Ruilin
Qin, Xiaomei
Pan, Dong
Zhao, Xin
Ma, Dongyang
Xu, Xiufeng
Liu, Xiaojun
Wang, Can
Yang, Bingxin
Zhang, Lanlan
Li, Shuyuan
Chen, Yiyao
Pan, Nina
Tang, Ping
Song, Jieping
Liu, Nian
Zhang, Chen
Zhang, Zhiwei
Qiu, Xiang
Lu, Weiliang
Ying, Chunmei
Li, Xiaotian
Xu, Congjian
Wang, Yanlin
Wu, Yanting
Huang, He-Feng
Zhang, Jinglan
Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening
title Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening
title_full Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening
title_fullStr Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening
title_full_unstemmed Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening
title_short Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening
title_sort genetic deconvolution of fetal and maternal cell-free dna in maternal plasma enables next-generation non-invasive prenatal screening
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562363/
https://www.ncbi.nlm.nih.gov/pubmed/36229437
http://dx.doi.org/10.1038/s41421-022-00457-4
work_keys_str_mv AT xuchenming geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT lijianli geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT chensongchang geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT caixiaoqiang geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT jingruilin geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT qinxiaomei geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT pandong geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT zhaoxin geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT madongyang geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT xuxiufeng geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT liuxiaojun geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT wangcan geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT yangbingxin geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT zhanglanlan geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT lishuyuan geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT chenyiyao geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT pannina geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT tangping geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT songjieping geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT liunian geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT zhangchen geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT zhangzhiwei geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT qiuxiang geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT luweiliang geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT yingchunmei geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT lixiaotian geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT xucongjian geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT wangyanlin geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT wuyanting geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT huanghefeng geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening
AT zhangjinglan geneticdeconvolutionoffetalandmaternalcellfreednainmaternalplasmaenablesnextgenerationnoninvasiveprenatalscreening