Cargando…
Putting on molecular weight: Enabling cryo-EM structure determination of sub-100-kDa proteins
Significant advances in the past decade have enabled high-resolution structure determination of a vast variety of proteins by cryogenic electron microscopy single particle analysis. Despite improved sample preparation, next-generation imaging hardware, and advanced single particle analysis algorithm...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562432/ https://www.ncbi.nlm.nih.gov/pubmed/36248264 http://dx.doi.org/10.1016/j.crstbi.2022.09.005 |
Sumario: | Significant advances in the past decade have enabled high-resolution structure determination of a vast variety of proteins by cryogenic electron microscopy single particle analysis. Despite improved sample preparation, next-generation imaging hardware, and advanced single particle analysis algorithms, small proteins remain elusive for reconstruction due to low signal-to-noise and lack of distinctive structural features. Multiple efforts have therefore been directed at the development of size-increase techniques for small proteins. Here we review the latest methods for increasing effective molecular weight of proteins <100 kDa through target protein binding or target protein fusion - specifically by using nanobody-based assemblies, fusion tags, and symmetric scaffolds. Finally, we summarize these state-of-the-art techniques into a decision-tree to facilitate the design of tailored future approaches, and thus for further exploration of ever-smaller proteins that make up the largest part of the human genome. |
---|