Cargando…

Features and applications of energy devices for prone robot-assisted minimally invasive esophagectomy: a narrative review

BACKGROUND AND OBJECTIVE: Robot-assisted surgery is particularly useful in esophagectomy for esophageal cancer because robotic systems have high-resolution three-dimensional imaging, tremor filtering, and articulated instruments. This review article focuses on the applications and limitations of sur...

Descripción completa

Detalles Bibliográficos
Autores principales: Hirahara, Noriyuki, Matsubara, Takeshi, Hayashi, Hikota, Tajima, Yoshitsugu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562513/
https://www.ncbi.nlm.nih.gov/pubmed/36245588
http://dx.doi.org/10.21037/jtd-22-559
Descripción
Sumario:BACKGROUND AND OBJECTIVE: Robot-assisted surgery is particularly useful in esophagectomy for esophageal cancer because robotic systems have high-resolution three-dimensional imaging, tremor filtering, and articulated instruments. This review article focuses on the applications and limitations of surgical devices in robot-assisted minimally invasive esophagectomy (RAMIE). METHODS: A narrative search of Medline was performed for articles published using the keywords “robot-assisted esophagectomy”, “technique”, “postoperative complication”, and “short-term outcomes”. KEY CONTENTS AND FINDINGS: Monopolar scissors: these devices with a sharp tip have an articulating function that allows for fast, sharp dissection without an electrical source. However, scissor-type devices cannot compress the organ, and their hemostatic ability is rather weak. Maryland bipolar forceps: the device has a very thin tip that allows for accurate dissection as well as stronger hemostatic ability by closing the forceps to compress tissues and applying electric current. The disadvantage is longer operation time because the forceps need to be constantly closed and reopened. Long Maryland bipolar grasper: the tip of the long Maryland bipolar grasper is slightly blunt and has the advantage of versatility because it can grip the tissue more delicately. Ultrasonic scalpel: the device can transect tissues speedily without bleeding, shortening operation time, but lacks articulating function. Although thermal spread to the surroundings is relatively narrow, activation time increases with the amount of tissue to be grasped; this raises the temperature above that of the vessel sealer. Vessel sealer: the device is one of the most powerful hemostatic energy devices, based on bipolar electrodes. The articulating jaws on both sides are more suited for sharp transection rather than meticulous dissection because of its powerful hemostatic force and blunt tip. It is also important to note that the vessel sealer produces widespread high-temperature steam. SynchroSeal: the device offers fast activation time, and due to the tip of the device being finely divided, which requires relatively precise manipulation. CONCLUSIONS: Robot-assisted surgery reduces the limitations of conventional endoscopic surgery by offering stable high-resolution three-dimensional imaging, tremor filtering, and articulated instruments. It is important to understand and exploit the advantages of energy devices suitable for RAMIE.