Cargando…
Non-invasive assessment of HFpEF in mouse models: current gaps and future directions
BACKGROUND: Heart failure (HF) with preserved ejection fraction (HFpEF) prevalence is increasing, and large clinical trials have failed to reduce mortality. A major reason for this outcome is the failure to translate results from basic research to the clinics. Evaluation of HFpEF in mouse models req...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563110/ https://www.ncbi.nlm.nih.gov/pubmed/36229816 http://dx.doi.org/10.1186/s12916-022-02546-3 |
_version_ | 1784808325497487360 |
---|---|
author | Villalba-Orero, María Garcia-Pavia, Pablo Lara-Pezzi, Enrique |
author_facet | Villalba-Orero, María Garcia-Pavia, Pablo Lara-Pezzi, Enrique |
author_sort | Villalba-Orero, María |
collection | PubMed |
description | BACKGROUND: Heart failure (HF) with preserved ejection fraction (HFpEF) prevalence is increasing, and large clinical trials have failed to reduce mortality. A major reason for this outcome is the failure to translate results from basic research to the clinics. Evaluation of HFpEF in mouse models requires assessing three major key features defining this complex syndrome: the presence of a preserved left ventricular ejection fraction (LVEF), diastolic dysfunction, and the development of HF. In addition, HFpEF is associated with multiple comorbidities such as systemic arterial hypertension, chronic obstructive pulmonary disease, sleep apnea, diabetes, and obesity; thus, non-cardiac disorders assessment is crucial for a complete phenotype characterization. Non-invasive procedures present unquestionable advantages to maintain animal welfare and enable longitudinal analyses. However, unequivocally determining the presence of HFpEF using these methods remains challenging. MAIN TEXT: Transthoracic echocardiography (TTE) represents an invaluable tool in HFpEF diagnosis, allowing evaluation of LVEF, diastolic dysfunction, and lung congestion in mice. Since conventional parameters used to evaluate an abnormal diastole like E/A ratio, isovolumic relaxation time, and E/e′ may pose limitations in mice, including advanced TTE techniques to characterize cardiac motion, including an assessment under stress, will improve diagnosis. Patients with HFpEF also show electrical cardiac remodelling and therefore electrocardiography may add valuable information in mouse models to assess chronotropic incompetence and sinoatrial node dysfunction, which are major contributors to exercise intolerance. To complete the non-invasive diagnosis of HF, low aerobic exercise capacity and fatigue using exercise tests, impaired oxygen exchange using metabolic cages, and determination of blood biomarkers can be determined. Finally, since HFpEF patients commonly present non-cardiac pathological conditions, acquisition of systemic and pulmonary arterial pressures, blood glucose levels, and performing glucose tolerance and insulin resistance tests are required for a complete phenotyping. CONCLUSION: Identification of reliable models of HFpEF in mice by using proper diagnosis tools is necessary to translate basic research results to the clinics. Determining the presence of several HFpEF indicators and a higher number of abnormal parameters will lead to more reliable evidence of HFpEF. |
format | Online Article Text |
id | pubmed-9563110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-95631102022-10-15 Non-invasive assessment of HFpEF in mouse models: current gaps and future directions Villalba-Orero, María Garcia-Pavia, Pablo Lara-Pezzi, Enrique BMC Med Opinion BACKGROUND: Heart failure (HF) with preserved ejection fraction (HFpEF) prevalence is increasing, and large clinical trials have failed to reduce mortality. A major reason for this outcome is the failure to translate results from basic research to the clinics. Evaluation of HFpEF in mouse models requires assessing three major key features defining this complex syndrome: the presence of a preserved left ventricular ejection fraction (LVEF), diastolic dysfunction, and the development of HF. In addition, HFpEF is associated with multiple comorbidities such as systemic arterial hypertension, chronic obstructive pulmonary disease, sleep apnea, diabetes, and obesity; thus, non-cardiac disorders assessment is crucial for a complete phenotype characterization. Non-invasive procedures present unquestionable advantages to maintain animal welfare and enable longitudinal analyses. However, unequivocally determining the presence of HFpEF using these methods remains challenging. MAIN TEXT: Transthoracic echocardiography (TTE) represents an invaluable tool in HFpEF diagnosis, allowing evaluation of LVEF, diastolic dysfunction, and lung congestion in mice. Since conventional parameters used to evaluate an abnormal diastole like E/A ratio, isovolumic relaxation time, and E/e′ may pose limitations in mice, including advanced TTE techniques to characterize cardiac motion, including an assessment under stress, will improve diagnosis. Patients with HFpEF also show electrical cardiac remodelling and therefore electrocardiography may add valuable information in mouse models to assess chronotropic incompetence and sinoatrial node dysfunction, which are major contributors to exercise intolerance. To complete the non-invasive diagnosis of HF, low aerobic exercise capacity and fatigue using exercise tests, impaired oxygen exchange using metabolic cages, and determination of blood biomarkers can be determined. Finally, since HFpEF patients commonly present non-cardiac pathological conditions, acquisition of systemic and pulmonary arterial pressures, blood glucose levels, and performing glucose tolerance and insulin resistance tests are required for a complete phenotyping. CONCLUSION: Identification of reliable models of HFpEF in mice by using proper diagnosis tools is necessary to translate basic research results to the clinics. Determining the presence of several HFpEF indicators and a higher number of abnormal parameters will lead to more reliable evidence of HFpEF. BioMed Central 2022-10-14 /pmc/articles/PMC9563110/ /pubmed/36229816 http://dx.doi.org/10.1186/s12916-022-02546-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Opinion Villalba-Orero, María Garcia-Pavia, Pablo Lara-Pezzi, Enrique Non-invasive assessment of HFpEF in mouse models: current gaps and future directions |
title | Non-invasive assessment of HFpEF in mouse models: current gaps and future directions |
title_full | Non-invasive assessment of HFpEF in mouse models: current gaps and future directions |
title_fullStr | Non-invasive assessment of HFpEF in mouse models: current gaps and future directions |
title_full_unstemmed | Non-invasive assessment of HFpEF in mouse models: current gaps and future directions |
title_short | Non-invasive assessment of HFpEF in mouse models: current gaps and future directions |
title_sort | non-invasive assessment of hfpef in mouse models: current gaps and future directions |
topic | Opinion |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563110/ https://www.ncbi.nlm.nih.gov/pubmed/36229816 http://dx.doi.org/10.1186/s12916-022-02546-3 |
work_keys_str_mv | AT villalbaoreromaria noninvasiveassessmentofhfpefinmousemodelscurrentgapsandfuturedirections AT garciapaviapablo noninvasiveassessmentofhfpefinmousemodelscurrentgapsandfuturedirections AT larapezzienrique noninvasiveassessmentofhfpefinmousemodelscurrentgapsandfuturedirections |