Cargando…
A preliminary study on the application of deep learning methods based on convolutional network to the pathological diagnosis of PJI
OBJECTIVE: This study aimed to establish a deep learning method based on convolutional networks for the preliminary study of the pathological diagnosis of prosthetic joint infections (PJI). METHODS: We enrolled 20 revision patients after joint replacement from the Department of Orthopedics, the Firs...
Autores principales: | Tao, Ye, Hu, Hanwen, Li, Jie, Li, Mengting, Zheng, Qingyuan, Zhang, Guoqiang, Ni, Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563129/ https://www.ncbi.nlm.nih.gov/pubmed/36229852 http://dx.doi.org/10.1186/s42836-022-00145-4 |
Ejemplares similares
-
Application of deep learning (3-dimensional convolutional neural network) for the prediction of pathological invasiveness in lung adenocarcinoma: A preliminary study
por: Yanagawa, Masahiro, et al.
Publicado: (2019) -
The role of alpha defensin in prosthetic joint infection (PJI) diagnosis: a literature review
por: Bonanzinga, Tommaso, et al.
Publicado: (2019) -
Sensor Data-Driven Bearing Fault Diagnosis Based on Deep Convolutional Neural Networks and S-Transform
por: Li, Guoqiang, et al.
Publicado: (2019) -
Development of an innovative in vivo model of PJI treated with DAIR
por: Poilvache, Hervé, et al.
Publicado: (2022) -
Prophylaxis for the Prevention of PJI after TAA: Is It Economically Justifiable?
por: Martinazzi, Brandon J., et al.
Publicado: (2022)