Cargando…
Training spiking neuronal networks to perform motor control using reinforcement and evolutionary learning
Artificial neural networks (ANNs) have been successfully trained to perform a wide range of sensory-motor behaviors. In contrast, the performance of spiking neuronal network (SNN) models trained to perform similar behaviors remains relatively suboptimal. In this work, we aimed to push the field of S...
Autores principales: | Haşegan, Daniel, Deible, Matt, Earl, Christopher, D’Onofrio, David, Hazan, Hananel, Anwar, Haroon, Neymotin, Samuel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563231/ https://www.ncbi.nlm.nih.gov/pubmed/36249482 http://dx.doi.org/10.3389/fncom.2022.1017284 |
Ejemplares similares
-
Training a spiking neuronal network model of visual-motor cortex to play a virtual racket-ball game using reinforcement learning
por: Anwar, Haroon, et al.
Publicado: (2022) -
Reinforcement Learning of Targeted Movement in a Spiking Neuronal Model of Motor Cortex
por: Chadderdon, George L., et al.
Publicado: (2012) -
Correction: Reinforcement Learning of Targeted Movement in a Spiking Neuronal Model of Motor Cortex
por: Chadderdon, George L., et al.
Publicado: (2013) -
Closed Loop Experiment Manager (CLEM)—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments
por: Hazan, Hananel, et al.
Publicado: (2017) -
Motor cortex neurons: from experiment to model via evolutionary algorithms
por: Neymotin, Samuel A, et al.
Publicado: (2015)