Cargando…

Understanding the extracellular vesicle surface for clinical molecular biology

Extracellular vesicles (EVs) are lipid‐membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell‐of‐origin. Whil...

Descripción completa

Detalles Bibliográficos
Autores principales: Hallal, Susannah, Tűzesi, Ágota, Grau, Georges E., Buckland, Michael E., Alexander, Kimberley L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563386/
https://www.ncbi.nlm.nih.gov/pubmed/36239734
http://dx.doi.org/10.1002/jev2.12260
Descripción
Sumario:Extracellular vesicles (EVs) are lipid‐membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell‐of‐origin. While the advent of high throughput omics technologies has allowed in‐depth characterisation of EV compositions, how these molecular species are spatially distributed within EV structures is not well appreciated. This is particularly true of the EV surface where a plethora of molecules are reported to be both integral and peripherally associated to the EV membrane. This coronal layer or ‘atmosphere’ that surrounds the EV membrane contributes to a large, highly interactive and dynamic surface area that is responsible for facilitating EV interactions with the extracellular environment. The EV coronal layer harbours surface molecules that reflect the identity of parent cells, which is likely a highly valuable property in the context of diagnostic liquid biopsies. In this review, we describe the current understanding of the mechanical, electrostatic and molecular properties of the EV surface that offer significant biomarker potential and contribute to a highly dynamic interactome.