Cargando…
A Machine Learning-Based Predictive Model of Epidermal Growth Factor Mutations in Lung Adenocarcinomas
SIMPLE SUMMARY: Targeted therapy against epidermal growth factor (EGFR) mutations has become the standard of care for non-small cell lung cancer, and there has not been an efficient genetic test for non-small cell lung cancer patients. The present study aims to find a novel data-driven genetic testi...
Autores principales: | He, Ruimin, Yang, Xiaohua, Li, Tengxiang, He, Yaolin, Xie, Xiaoxue, Chen, Qilei, Zhang, Zijian, Cheng, Tingting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563411/ https://www.ncbi.nlm.nih.gov/pubmed/36230590 http://dx.doi.org/10.3390/cancers14194664 |
Ejemplares similares
-
Machine Learning-Based Radiomics for Prediction of Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma
por: Lu, Jiameng, et al.
Publicado: (2022) -
Adenocarcinoma of the lung with positive epidermal growth factor receptor mutation in pregnancy
por: Amanda, Gina, et al.
Publicado: (2017) -
A machine learning-based prediction of the micropapillary/solid growth pattern in invasive lung adenocarcinoma with radiomics
por: He, Bingxi, et al.
Publicado: (2021) -
Mutations in the epidermal growth factor receptor gene are linked to smoking-independent, lung adenocarcinoma
por: Sonobe, M, et al.
Publicado: (2005) -
Detection of epidermal growth factor receptor mutations in lung adenocarcinoma cytological specimens by immunocytochemistry
por: Yoshida, Masami, et al.
Publicado: (2017)