Cargando…
A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning
BACKGROUND: Selecting and prioritizing candidate disease genes is necessary before conducting laboratory studies as identifying disease genes from a large number of candidate genes using laboratory methods, is a very costly and time-consuming task. There are many machine learning-based gene prioriti...
Autores principales: | Azadifar, Saeid, Ahmadi, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563530/ https://www.ncbi.nlm.nih.gov/pubmed/36241966 http://dx.doi.org/10.1186/s12859-022-04954-x |
Ejemplares similares
-
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
A graph-based gene selection method for medical diagnosis problems using a many-objective PSO algorithm
por: Azadifar, Saeid, et al.
Publicado: (2021) -
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
por: Wang, Yifan, et al.
Publicado: (2023) -
SeBioGraph: Semi-supervised Deep Learning for the Graph via Sustainable Knowledge Transfer
por: Ma, Yugang, et al.
Publicado: (2021) -
Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks
por: Pan, Xiaoyong, et al.
Publicado: (2019)