Cargando…
Transfer Learning for Adenocarcinoma Classifications in the Transurethral Resection of Prostate Whole-Slide Images
SIMPLE SUMMARY: In this study, we trained deep learning models to classify TUR-P WSIs into prostate adenocarcinoma and benign (non-neoplastic) lesions using transfer and weakly supervised learning. Overall, the model achieved good classification performance in classifying whole-slide images, demonst...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563552/ https://www.ncbi.nlm.nih.gov/pubmed/36230666 http://dx.doi.org/10.3390/cancers14194744 |
Sumario: | SIMPLE SUMMARY: In this study, we trained deep learning models to classify TUR-P WSIs into prostate adenocarcinoma and benign (non-neoplastic) lesions using transfer and weakly supervised learning. Overall, the model achieved good classification performance in classifying whole-slide images, demonstrating the potential benefit of future deployments in a practical TUR-P histopathological diagnostic workflow system. ABSTRACT: The transurethral resection of the prostate (TUR-P) is an option for benign prostatic diseases, especially nodular hyperplasia patients who have moderate to severe urinary problems that have not responded to medication. Importantly, incidental prostate cancer is diagnosed at the time of TUR-P for benign prostatic disease. TUR-P specimens contain a large number of fragmented prostate tissues; this makes them time consuming to examine for pathologists as they have to check each fragment one by one. In this study, we trained deep learning models to classify TUR-P WSIs into prostate adenocarcinoma and benign (non-neoplastic) lesions using transfer and weakly supervised learning. We evaluated the models on TUR-P, needle biopsy, and The Cancer Genome Atlas (TCGA) public dataset test sets, achieving an ROC-AUC up to 0.984 in TUR-P test sets for adenocarcinoma. The results demonstrate the promising potential of deployment in a practical TUR-P histopathological diagnostic workflow system to improve the efficiency of pathologists. |
---|