Cargando…

Rab GTPases as Modulators of Vascular Function

Rab GTPases, the largest family of small GTPases, are ubiquitously expressed proteins that control various aspects of cellular function, from cell survival to exocytosis. Rabs cycle between the GDP-bound inactive form and the GTP-bound active form. When activated, specific Rab GTPase-positive vesicl...

Descripción completa

Detalles Bibliográficos
Autores principales: Raghavan, Somasundaram, Brishti, Masuma Akter, Leo, M. Dennis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563587/
https://www.ncbi.nlm.nih.gov/pubmed/36231021
http://dx.doi.org/10.3390/cells11193061
Descripción
Sumario:Rab GTPases, the largest family of small GTPases, are ubiquitously expressed proteins that control various aspects of cellular function, from cell survival to exocytosis. Rabs cycle between the GDP-bound inactive form and the GTP-bound active form. When activated, specific Rab GTPase-positive vesicles mediate cellular networks involved in intracellular trafficking, recycling, and/or exocytosis of cargo proteins. Dysfunctional Rab signaling pathways have been implicated in various disease processes. The precise cellular functions of several members of the Rab GTPase family are still unknown. A lack of pharmacological tools and the lethality of gene knockouts have made more detailed characterizations of their protein interaction networks difficult. Nevertheless, available evidence suggests that these proteins are vital for normal cell function. Endothelial and smooth muscle cells control vascular lumen diameter and modulate blood flow. Endothelial cells also secrete several pro- and antithrombotic factors and vasoactive substances to coordinate local inflammatory responses and angiogenesis. Rab GTPase function in endothelial cells has been relatively well-explored, while only a handful of reports are available on these proteins in vascular smooth muscle. This review summarizes the present knowledge on Rab GTPases in the vasculature.