Cargando…

The Effect of Germanium-Loaded Hydroxyapatite Biomaterials on Bone Marrow Mesenchymal Stem Cells Growth

Hydroxyapatite (HA) is a hard mineral component of mineralized tissues, mainly composed of calcium and phosphate. Due to its bioavailability, HA is potentially used for the repair and regeneration of mineralized tissues. For this purpose, the properties of HA are significantly improved by adding nat...

Descripción completa

Detalles Bibliográficos
Autores principales: Elango, Jeevithan, Bushin, Rodion, Lijnev, Artiom, De Aza, Piedad N., Martínez, Carlos Pérez-Albacete, Marín, José Manuel Granero, Hernandez, Ana Belen, Olmo, Luis Ramón Meseguer, Val, José Eduardo Maté Sánchez De
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563598/
https://www.ncbi.nlm.nih.gov/pubmed/36230954
http://dx.doi.org/10.3390/cells11192993
Descripción
Sumario:Hydroxyapatite (HA) is a hard mineral component of mineralized tissues, mainly composed of calcium and phosphate. Due to its bioavailability, HA is potentially used for the repair and regeneration of mineralized tissues. For this purpose, the properties of HA are significantly improved by adding natural and synthetic materials. In this sense, the germanium (Ge) mineral was loaded in HA biomaterial by cold isostatic pressure for the first time and characterization and biocompatibility using bone marrow mesenchymal stem cells (BM-MSCs) were investigated. The addition of Ge at 5% improved the solubility (3.32%), stiffness (18.34 MPa), water holding (31.27%) and biodegradation (21.87%) properties of HA, compared to control. Compared to all composite biomaterials, the drug-releasing behavior of HA-3% Ge was higher at pH 1 and 3 and the maximum drug release was obtained at pH 7 and 9 with HA-5% Ge biomaterials. Among the different mediums tested, the DMEM-medium showed a higher drug release rate, especially at 60 min. HA-Ge biomaterials showed better protein adhesion and apatite layer formation, which ultimately proves the compatibility in BM-MSCs culture. Except for higher concentrations of HA (5 and 10 mg/mL), the different concentrations of Ge and HA and wells coated with 1% of HA-1% Ge had higher BM-MSCs growth than control. All these findings concluded that the fabricated HA biomaterials loaded with Ge could be the potential biomaterial for culturing mammalian cells towards mineralized tissue repair and regeneration.