Cargando…
Real-Time Grading of Defect Apples Using Semantic Segmentation Combination with a Pruned YOLO V4 Network
At present, the apple grading system usually conveys apples by a belt or rollers. This usually leads to low hardness or expensive fruits being bruised, resulting in economic losses. In order to realize real-time detection and classification of high-quality apples, separate fruit trays were designed...
Autores principales: | Liang, Xiaoting, Jia, Xueying, Huang, Wenqian, He, Xin, Li, Lianjie, Fan, Shuxiang, Li, Jiangbo, Zhao, Chunjiang, Zhang, Chi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563605/ https://www.ncbi.nlm.nih.gov/pubmed/36230226 http://dx.doi.org/10.3390/foods11193150 |
Ejemplares similares
-
CAP-YOLO: Channel Attention Based Pruning YOLO for Coal Mine Real-Time Intelligent Monitoring
por: Xu, Zhi, et al.
Publicado: (2022) -
Weight Pruning-UNet: Weight Pruning UNet with Depth-wise Separable Convolutions for Semantic Segmentation of Kidney Tumors
por: Rao, Patike Kiran, et al.
Publicado: (2022) -
ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases
por: Xu, Weishi, et al.
Publicado: (2023) -
Quasi Real-Time Apple Defect Segmentation Using Deep Learning
por: Agarla, Mirko, et al.
Publicado: (2023) -
WD-YOLO: A More Accurate YOLO for Defect Detection in Weld X-ray Images
por: Pan, Kailai, et al.
Publicado: (2023)