Cargando…

In Vivo Inhibition of miR-34a Modestly Limits Cardiac Enlargement and Fibrosis in a Mouse Model with Established Type 1 Diabetes-Induced Cardiomyopathy, but Does Not Improve Diastolic Function

MicroRNA 34a (miR-34a) is elevated in the heart in a setting of cardiac stress or pathology, and we previously reported that inhibition of miR-34a in vivo provided protection in a setting of pressure overload-induced pathological cardiac hypertrophy and dilated cardiomyopathy. Prior work had also sh...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernardo, Bianca C., Yildiz, Gunes S., Kiriazis, Helen, Harmawan, Claudia A., Tai, Celeste M. K., Ritchie, Rebecca H., McMullen, Julie R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563608/
https://www.ncbi.nlm.nih.gov/pubmed/36231079
http://dx.doi.org/10.3390/cells11193117
_version_ 1784808445026762752
author Bernardo, Bianca C.
Yildiz, Gunes S.
Kiriazis, Helen
Harmawan, Claudia A.
Tai, Celeste M. K.
Ritchie, Rebecca H.
McMullen, Julie R.
author_facet Bernardo, Bianca C.
Yildiz, Gunes S.
Kiriazis, Helen
Harmawan, Claudia A.
Tai, Celeste M. K.
Ritchie, Rebecca H.
McMullen, Julie R.
author_sort Bernardo, Bianca C.
collection PubMed
description MicroRNA 34a (miR-34a) is elevated in the heart in a setting of cardiac stress or pathology, and we previously reported that inhibition of miR-34a in vivo provided protection in a setting of pressure overload-induced pathological cardiac hypertrophy and dilated cardiomyopathy. Prior work had also shown that circulating or cardiac miR-34a was elevated in a setting of diabetes. However, the therapeutic potential of inhibiting miR-34a in vivo in the diabetic heart had not been assessed. In the current study, type 1 diabetes was induced in adult male mice with 5 daily injections of streptozotocin (STZ). At 8 weeks post-STZ, when mice had established type 1 diabetes and diastolic dysfunction, mice were administered locked nucleic acid (LNA)-antimiR-34a or saline-control with an eight-week follow-up. Cardiac function, cardiac morphology, cardiac fibrosis, capillary density and gene expression were assessed. Diabetic mice presented with high blood glucose, elevated liver and kidney weights, diastolic dysfunction, mild cardiac enlargement, cardiac fibrosis and reduced myocardial capillary density. miR-34a was elevated in the heart of diabetic mice in comparison to non-diabetic mice. Inhibition of miR-34a had no significant effect on diastolic function or atrial enlargement, but had a mild effect on preventing an elevation in cardiac enlargement, fibrosis and ventricular gene expression of B-type natriuretic peptide (BNP) and the anti-angiogenic miRNA (miR-92a). A miR-34a target, vinculin, was inversely correlated with miR-34a expression, but other miR-34a targets were unchanged. In summary, inhibition of miR-34a provided limited protection in a mouse model with established type 1 diabetes-induced cardiomyopathy and failed to improve diastolic function. Given diabetes represents a systemic disorder with numerous miRNAs dysregulated in the diabetic heart, as well as other organs, strategies targeting multiple miRNAs and/or earlier intervention is likely to be required.
format Online
Article
Text
id pubmed-9563608
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95636082022-10-15 In Vivo Inhibition of miR-34a Modestly Limits Cardiac Enlargement and Fibrosis in a Mouse Model with Established Type 1 Diabetes-Induced Cardiomyopathy, but Does Not Improve Diastolic Function Bernardo, Bianca C. Yildiz, Gunes S. Kiriazis, Helen Harmawan, Claudia A. Tai, Celeste M. K. Ritchie, Rebecca H. McMullen, Julie R. Cells Article MicroRNA 34a (miR-34a) is elevated in the heart in a setting of cardiac stress or pathology, and we previously reported that inhibition of miR-34a in vivo provided protection in a setting of pressure overload-induced pathological cardiac hypertrophy and dilated cardiomyopathy. Prior work had also shown that circulating or cardiac miR-34a was elevated in a setting of diabetes. However, the therapeutic potential of inhibiting miR-34a in vivo in the diabetic heart had not been assessed. In the current study, type 1 diabetes was induced in adult male mice with 5 daily injections of streptozotocin (STZ). At 8 weeks post-STZ, when mice had established type 1 diabetes and diastolic dysfunction, mice were administered locked nucleic acid (LNA)-antimiR-34a or saline-control with an eight-week follow-up. Cardiac function, cardiac morphology, cardiac fibrosis, capillary density and gene expression were assessed. Diabetic mice presented with high blood glucose, elevated liver and kidney weights, diastolic dysfunction, mild cardiac enlargement, cardiac fibrosis and reduced myocardial capillary density. miR-34a was elevated in the heart of diabetic mice in comparison to non-diabetic mice. Inhibition of miR-34a had no significant effect on diastolic function or atrial enlargement, but had a mild effect on preventing an elevation in cardiac enlargement, fibrosis and ventricular gene expression of B-type natriuretic peptide (BNP) and the anti-angiogenic miRNA (miR-92a). A miR-34a target, vinculin, was inversely correlated with miR-34a expression, but other miR-34a targets were unchanged. In summary, inhibition of miR-34a provided limited protection in a mouse model with established type 1 diabetes-induced cardiomyopathy and failed to improve diastolic function. Given diabetes represents a systemic disorder with numerous miRNAs dysregulated in the diabetic heart, as well as other organs, strategies targeting multiple miRNAs and/or earlier intervention is likely to be required. MDPI 2022-10-03 /pmc/articles/PMC9563608/ /pubmed/36231079 http://dx.doi.org/10.3390/cells11193117 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bernardo, Bianca C.
Yildiz, Gunes S.
Kiriazis, Helen
Harmawan, Claudia A.
Tai, Celeste M. K.
Ritchie, Rebecca H.
McMullen, Julie R.
In Vivo Inhibition of miR-34a Modestly Limits Cardiac Enlargement and Fibrosis in a Mouse Model with Established Type 1 Diabetes-Induced Cardiomyopathy, but Does Not Improve Diastolic Function
title In Vivo Inhibition of miR-34a Modestly Limits Cardiac Enlargement and Fibrosis in a Mouse Model with Established Type 1 Diabetes-Induced Cardiomyopathy, but Does Not Improve Diastolic Function
title_full In Vivo Inhibition of miR-34a Modestly Limits Cardiac Enlargement and Fibrosis in a Mouse Model with Established Type 1 Diabetes-Induced Cardiomyopathy, but Does Not Improve Diastolic Function
title_fullStr In Vivo Inhibition of miR-34a Modestly Limits Cardiac Enlargement and Fibrosis in a Mouse Model with Established Type 1 Diabetes-Induced Cardiomyopathy, but Does Not Improve Diastolic Function
title_full_unstemmed In Vivo Inhibition of miR-34a Modestly Limits Cardiac Enlargement and Fibrosis in a Mouse Model with Established Type 1 Diabetes-Induced Cardiomyopathy, but Does Not Improve Diastolic Function
title_short In Vivo Inhibition of miR-34a Modestly Limits Cardiac Enlargement and Fibrosis in a Mouse Model with Established Type 1 Diabetes-Induced Cardiomyopathy, but Does Not Improve Diastolic Function
title_sort in vivo inhibition of mir-34a modestly limits cardiac enlargement and fibrosis in a mouse model with established type 1 diabetes-induced cardiomyopathy, but does not improve diastolic function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563608/
https://www.ncbi.nlm.nih.gov/pubmed/36231079
http://dx.doi.org/10.3390/cells11193117
work_keys_str_mv AT bernardobiancac invivoinhibitionofmir34amodestlylimitscardiacenlargementandfibrosisinamousemodelwithestablishedtype1diabetesinducedcardiomyopathybutdoesnotimprovediastolicfunction
AT yildizguness invivoinhibitionofmir34amodestlylimitscardiacenlargementandfibrosisinamousemodelwithestablishedtype1diabetesinducedcardiomyopathybutdoesnotimprovediastolicfunction
AT kiriazishelen invivoinhibitionofmir34amodestlylimitscardiacenlargementandfibrosisinamousemodelwithestablishedtype1diabetesinducedcardiomyopathybutdoesnotimprovediastolicfunction
AT harmawanclaudiaa invivoinhibitionofmir34amodestlylimitscardiacenlargementandfibrosisinamousemodelwithestablishedtype1diabetesinducedcardiomyopathybutdoesnotimprovediastolicfunction
AT taicelestemk invivoinhibitionofmir34amodestlylimitscardiacenlargementandfibrosisinamousemodelwithestablishedtype1diabetesinducedcardiomyopathybutdoesnotimprovediastolicfunction
AT ritchierebeccah invivoinhibitionofmir34amodestlylimitscardiacenlargementandfibrosisinamousemodelwithestablishedtype1diabetesinducedcardiomyopathybutdoesnotimprovediastolicfunction
AT mcmullenjulier invivoinhibitionofmir34amodestlylimitscardiacenlargementandfibrosisinamousemodelwithestablishedtype1diabetesinducedcardiomyopathybutdoesnotimprovediastolicfunction