Cargando…
Predicting cross-tissue hormone–gene relations using balanced word embeddings
MOTIVATION: Inter-organ/inter-tissue communication is central to multi-cellular organisms including humans, and mapping inter-tissue interactions can advance system-level whole-body modeling efforts. Large volumes of biomedical literature have fostered studies that map within-tissue or tissue-agnost...
Autores principales: | Jadhav, Aditya, Kumar, Tarun, Raghavendra, Mohit, Loganathan, Tamizhini, Narayanan, Manikandan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563690/ https://www.ncbi.nlm.nih.gov/pubmed/36000859 http://dx.doi.org/10.1093/bioinformatics/btac578 |
Ejemplares similares
-
Cross-lingual word embeddings
por: Søgaard, Anders, et al.
Publicado: (2019) -
Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets
por: Loganathan, Tamizhini, et al.
Publicado: (2023) -
Word embeddings
por: Hellrich, J
Publicado: (2019) -
MultiCens: Multilayer network centrality measures to uncover molecular mediators of tissue-tissue communication
por: Kumar, Tarun, et al.
Publicado: (2023) -
A Word on Words in Words: How Do Embedded Words Affect Reading?
por: Snell, Joshua, et al.
Publicado: (2018)