Cargando…
Improved Model for Starch Prediction in Potato by the Fusion of Near-Infrared Spectral and Textural Data
In this study, visible-near-infrared (VIS-NIR) hyperspectral imaging was combined with a data fusion strategy for the nondestructive assessment of the starch content in intact potatoes. Spectral and textural data were extracted from hyperspectral images and transformed principal component (PC) image...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563719/ https://www.ncbi.nlm.nih.gov/pubmed/36230208 http://dx.doi.org/10.3390/foods11193133 |
_version_ | 1784808470642425856 |
---|---|
author | Wang, Fuxiang Wang, Chunguang |
author_facet | Wang, Fuxiang Wang, Chunguang |
author_sort | Wang, Fuxiang |
collection | PubMed |
description | In this study, visible-near-infrared (VIS-NIR) hyperspectral imaging was combined with a data fusion strategy for the nondestructive assessment of the starch content in intact potatoes. Spectral and textural data were extracted from hyperspectral images and transformed principal component (PC) images, respectively, and a partial least squares regression (PLSR) prediction model was then established. The results revealed that low-level data fusion could not improve accuracy in predicting starch content. Therefore, to improve prediction accuracy, key variables were selected from the spectral and textural data through competitive adaptive reweighted sampling (CARS) and correlation analysis, respectively, and mid-level data fusion was performed. With a residual predictive deviation (RPD) value > 2, the established PLSR model achieved satisfactory prediction accuracy. Therefore, this study demonstrated that appropriate data fusion can effectively improve the prediction accuracy for starch content and thus aid the sorting of potato starch content in the production line. |
format | Online Article Text |
id | pubmed-9563719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95637192022-10-15 Improved Model for Starch Prediction in Potato by the Fusion of Near-Infrared Spectral and Textural Data Wang, Fuxiang Wang, Chunguang Foods Article In this study, visible-near-infrared (VIS-NIR) hyperspectral imaging was combined with a data fusion strategy for the nondestructive assessment of the starch content in intact potatoes. Spectral and textural data were extracted from hyperspectral images and transformed principal component (PC) images, respectively, and a partial least squares regression (PLSR) prediction model was then established. The results revealed that low-level data fusion could not improve accuracy in predicting starch content. Therefore, to improve prediction accuracy, key variables were selected from the spectral and textural data through competitive adaptive reweighted sampling (CARS) and correlation analysis, respectively, and mid-level data fusion was performed. With a residual predictive deviation (RPD) value > 2, the established PLSR model achieved satisfactory prediction accuracy. Therefore, this study demonstrated that appropriate data fusion can effectively improve the prediction accuracy for starch content and thus aid the sorting of potato starch content in the production line. MDPI 2022-10-08 /pmc/articles/PMC9563719/ /pubmed/36230208 http://dx.doi.org/10.3390/foods11193133 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Fuxiang Wang, Chunguang Improved Model for Starch Prediction in Potato by the Fusion of Near-Infrared Spectral and Textural Data |
title | Improved Model for Starch Prediction in Potato by the Fusion of Near-Infrared Spectral and Textural Data |
title_full | Improved Model for Starch Prediction in Potato by the Fusion of Near-Infrared Spectral and Textural Data |
title_fullStr | Improved Model for Starch Prediction in Potato by the Fusion of Near-Infrared Spectral and Textural Data |
title_full_unstemmed | Improved Model for Starch Prediction in Potato by the Fusion of Near-Infrared Spectral and Textural Data |
title_short | Improved Model for Starch Prediction in Potato by the Fusion of Near-Infrared Spectral and Textural Data |
title_sort | improved model for starch prediction in potato by the fusion of near-infrared spectral and textural data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563719/ https://www.ncbi.nlm.nih.gov/pubmed/36230208 http://dx.doi.org/10.3390/foods11193133 |
work_keys_str_mv | AT wangfuxiang improvedmodelforstarchpredictioninpotatobythefusionofnearinfraredspectralandtexturaldata AT wangchunguang improvedmodelforstarchpredictioninpotatobythefusionofnearinfraredspectralandtexturaldata |