Cargando…
Identifying Tissue- and Cohort-Specific RNA Regulatory Modules in Cancer Cells Using Multitask Learning
SIMPLE SUMMARY: Understanding the underlying biological mechanisms of primary tumors is crucial for predicting how tumors respond to therapies and exploring accurate treatment strategies. miRNA–mRNA interactions have a major effect on many biological processes that are important in the formation and...
Autores principales: | Mokhtaridoost, Milad, Maass, Philipp G., Gönen, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563725/ https://www.ncbi.nlm.nih.gov/pubmed/36230862 http://dx.doi.org/10.3390/cancers14194939 |
Ejemplares similares
-
Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning
por: Gönen, Mehmet, et al.
Publicado: (2014) -
Integrating gene set analysis and nonlinear predictive modeling of disease phenotypes using a Bayesian multitask formulation
por: Gönen, Mehmet
Publicado: (2016) -
Systematic characterization of regulatory variants of blood pressure genes
por: Oliveros, Winona, et al.
Publicado: (2023) -
Multitask Learning of Signaling and Regulatory Networks with Application to Studying Human Response to Flu
por: Jain, Siddhartha, et al.
Publicado: (2014) -
Bioinspired Architecture Selection for Multitask Learning
por: Bueno-Crespo, Andrés, et al.
Publicado: (2017)