Cargando…
AVNC: Attention-Based VGG-Style Network for COVID-19 Diagnosis by CBAM
(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects....
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564036/ https://www.ncbi.nlm.nih.gov/pubmed/36346097 http://dx.doi.org/10.1109/JSEN.2021.3062442 |
Ejemplares similares
-
Attention-based VGG-16 model for COVID-19 chest X-ray image classification
por: Sitaula, Chiranjibi, et al.
Publicado: (2020) -
P_VggNet: A convolutional neural network (CNN) with pixel-based attention map
por: Liu, Kunhua, et al.
Publicado: (2018) -
ICUnet++: an Inception-CBAM network based on Unet++ for MR spine image segmentation
por: Li, Lei, et al.
Publicado: (2023) -
ADVIAN: Alzheimer's Disease VGG-Inspired Attention Network Based on Convolutional Block Attention Module and Multiple Way Data Augmentation
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet
por: Canayaz, Murat
Publicado: (2021)