Cargando…
CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease arising from loss-of-function mutations in the dystrophin gene and characterized by progressive muscle degeneration, respiratory insufficiency, cardiac failure, and premature death by the age of thirty. Albeit DMD is one of the most...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564082/ https://www.ncbi.nlm.nih.gov/pubmed/36230926 http://dx.doi.org/10.3390/cells11192964 |
_version_ | 1784808553486221312 |
---|---|
author | Chen, Guofang Wei, Tingyi Yang, Hui Li, Guoling Li, Haisen |
author_facet | Chen, Guofang Wei, Tingyi Yang, Hui Li, Guoling Li, Haisen |
author_sort | Chen, Guofang |
collection | PubMed |
description | Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease arising from loss-of-function mutations in the dystrophin gene and characterized by progressive muscle degeneration, respiratory insufficiency, cardiac failure, and premature death by the age of thirty. Albeit DMD is one of the most common types of fatal genetic diseases, there is no curative treatment for this devastating disorder. In recent years, gene editing via the clustered regularly interspaced short palindromic repeats (CRISPR) system has paved a new path toward correcting pathological mutations at the genetic source, thus enabling the permanent restoration of dystrophin expression and function throughout the musculature. To date, the therapeutic benefits of CRISPR genome-editing systems have been successfully demonstrated in human cells, rodents, canines, and piglets with diverse DMD mutations. Nevertheless, there remain some nonignorable challenges to be solved before the clinical application of CRISPR-based gene therapy. Herein, we provide an overview of therapeutic CRISPR genome-editing systems, summarize recent advancements in their applications in DMD contexts, and discuss several potential obstacles lying ahead of clinical translation. |
format | Online Article Text |
id | pubmed-9564082 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95640822022-10-15 CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives Chen, Guofang Wei, Tingyi Yang, Hui Li, Guoling Li, Haisen Cells Review Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease arising from loss-of-function mutations in the dystrophin gene and characterized by progressive muscle degeneration, respiratory insufficiency, cardiac failure, and premature death by the age of thirty. Albeit DMD is one of the most common types of fatal genetic diseases, there is no curative treatment for this devastating disorder. In recent years, gene editing via the clustered regularly interspaced short palindromic repeats (CRISPR) system has paved a new path toward correcting pathological mutations at the genetic source, thus enabling the permanent restoration of dystrophin expression and function throughout the musculature. To date, the therapeutic benefits of CRISPR genome-editing systems have been successfully demonstrated in human cells, rodents, canines, and piglets with diverse DMD mutations. Nevertheless, there remain some nonignorable challenges to be solved before the clinical application of CRISPR-based gene therapy. Herein, we provide an overview of therapeutic CRISPR genome-editing systems, summarize recent advancements in their applications in DMD contexts, and discuss several potential obstacles lying ahead of clinical translation. MDPI 2022-09-22 /pmc/articles/PMC9564082/ /pubmed/36230926 http://dx.doi.org/10.3390/cells11192964 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Chen, Guofang Wei, Tingyi Yang, Hui Li, Guoling Li, Haisen CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives |
title | CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives |
title_full | CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives |
title_fullStr | CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives |
title_full_unstemmed | CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives |
title_short | CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives |
title_sort | crispr-based therapeutic gene editing for duchenne muscular dystrophy: advances, challenges and perspectives |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564082/ https://www.ncbi.nlm.nih.gov/pubmed/36230926 http://dx.doi.org/10.3390/cells11192964 |
work_keys_str_mv | AT chenguofang crisprbasedtherapeuticgeneeditingforduchennemusculardystrophyadvanceschallengesandperspectives AT weitingyi crisprbasedtherapeuticgeneeditingforduchennemusculardystrophyadvanceschallengesandperspectives AT yanghui crisprbasedtherapeuticgeneeditingforduchennemusculardystrophyadvanceschallengesandperspectives AT liguoling crisprbasedtherapeuticgeneeditingforduchennemusculardystrophyadvanceschallengesandperspectives AT lihaisen crisprbasedtherapeuticgeneeditingforduchennemusculardystrophyadvanceschallengesandperspectives |