Cargando…
Dissecting the stability determinants of a challenging de novo protein fold using massively parallel design and experimentation
Designing entirely new protein structures remains challenging because we do not fully understand the biophysical determinants of folding stability. Yet, some protein folds are easier to design than others. Previous work identified the 43-residue ɑββɑ fold as especially challenging: The best designs...
Autores principales: | Kim, Tae-Eun, Tsuboyama, Kotaro, Houliston, Scott, Martell, Cydney M., Phoumyvong, Claire M., Lemak, Alexander, Haddox, Hugh K., Arrowsmith, Cheryl H., Rocklin, Gabriel J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564214/ https://www.ncbi.nlm.nih.gov/pubmed/36191185 http://dx.doi.org/10.1073/pnas.2122676119 |
Ejemplares similares
-
De novo design of immunoglobulin-like domains
por: Chidyausiku, Tamuka M., et al.
Publicado: (2022) -
Mega-scale experimental analysis of protein folding stability in biology and design
por: Tsuboyama, Kotaro, et al.
Publicado: (2023) -
The RavA-ViaA chaperone complex modulates bacterial persistence through its association with the fumarate reductase enzyme
por: Bhandari, Vaibhav, et al.
Publicado: (2023) -
Solution NMR Structure and Histone Binding of the PHD Domain of Human MLL5
por: Lemak, Alexander, et al.
Publicado: (2013) -
Massively parallel functional dissection of mammalian enhancers in vivo
por: Patwardhan, Rupali P, et al.
Publicado: (2012)