Cargando…
A Hybrid Model Based on Improved Transformer and Graph Convolutional Network for COVID-19 Forecasting
The coronavirus disease 2019 (COVID-19) has spread rapidly around the world since 2020, with a significant fatality rate. Until recently, numerous countries were unable to adequately control the pandemic. As a result, COVID-19 trend prediction has become a hot topic in academic circles. Both traditi...
Autores principales: | Li, Yulan, Ma, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564883/ https://www.ncbi.nlm.nih.gov/pubmed/36231828 http://dx.doi.org/10.3390/ijerph191912528 |
Ejemplares similares
-
Spatial–Temporal Synchronous Graph Transformer network (STSGT) for COVID-19 forecasting
por: Banerjee, Soumyanil, et al.
Publicado: (2022) -
Exploring Transformer and Graph Convolutional Networks for Human Mobility Modeling
por: Corrias, Riccardo, et al.
Publicado: (2023) -
Human migration-based graph convolutional network for PM2.5 forecasting in post-COVID-19 pandemic age
por: Zhan, Choujun, et al.
Publicado: (2022) -
Diagnosis of COVID-19 Pneumonia Based on Graph Convolutional Network
por: Liang, Xiaoling, et al.
Publicado: (2021) -
Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
por: Huang, Lei, et al.
Publicado: (2022)