Cargando…

Cooperation loci are more pleiotropic than private loci in the bacterium Pseudomonas aeruginosa

Pleiotropy may affect the maintenance of cooperation by limiting cheater mutants if such mutants lose other important traits. If pleiotropy limits cheaters, selection may favor cooperation loci that are more pleiotropic. However, the same should not be true for private loci with functions unrelated...

Descripción completa

Detalles Bibliográficos
Autor principal: Scott, Trey J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9564939/
https://www.ncbi.nlm.nih.gov/pubmed/36191234
http://dx.doi.org/10.1073/pnas.2214827119
Descripción
Sumario:Pleiotropy may affect the maintenance of cooperation by limiting cheater mutants if such mutants lose other important traits. If pleiotropy limits cheaters, selection may favor cooperation loci that are more pleiotropic. However, the same should not be true for private loci with functions unrelated to cooperation. Pleiotropy in cooperative loci has mostly been studied with single loci and has not been measured on a wide scale or compared to a suitable set of control loci with private functions. I remedy this gap by comparing genomic measures of pleiotropy in previously identified cooperative and private loci in Pseudomonas aeruginosa. I found that cooperative loci in P. aeruginosa tended to be more pleiotropic than private loci according to the number of protein–protein interactions, the number of gene ontology terms, and gene expression specificity. These results show that pleiotropy may be a general way to limit cheating and that cooperation may shape pleiotropy in the genome.