Cargando…

Another look at rational torsion of modular Jacobians

We study the rational torsion subgroup of the modular Jacobian [Formula: see text] for N a square-free integer. We give a proof of a result of Ohta on a generalization of Ogg’s conjecture: For a prime number [Formula: see text] , the p-primary part of the rational torsion subgroup equals that of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Ribet, Kenneth A., Wake, Preston
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565053/
https://www.ncbi.nlm.nih.gov/pubmed/36191227
http://dx.doi.org/10.1073/pnas.2210032119
_version_ 1784808796693987328
author Ribet, Kenneth A.
Wake, Preston
author_facet Ribet, Kenneth A.
Wake, Preston
author_sort Ribet, Kenneth A.
collection PubMed
description We study the rational torsion subgroup of the modular Jacobian [Formula: see text] for N a square-free integer. We give a proof of a result of Ohta on a generalization of Ogg’s conjecture: For a prime number [Formula: see text] , the p-primary part of the rational torsion subgroup equals that of the cuspidal subgroup. Whereas previous proofs of this result used explicit computations of the cardinalities of these groups, we instead use their structure as modules for the Hecke algebra.
format Online
Article
Text
id pubmed-9565053
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-95650532023-04-03 Another look at rational torsion of modular Jacobians Ribet, Kenneth A. Wake, Preston Proc Natl Acad Sci U S A Physical Sciences We study the rational torsion subgroup of the modular Jacobian [Formula: see text] for N a square-free integer. We give a proof of a result of Ohta on a generalization of Ogg’s conjecture: For a prime number [Formula: see text] , the p-primary part of the rational torsion subgroup equals that of the cuspidal subgroup. Whereas previous proofs of this result used explicit computations of the cardinalities of these groups, we instead use their structure as modules for the Hecke algebra. National Academy of Sciences 2022-10-03 2022-10-11 /pmc/articles/PMC9565053/ /pubmed/36191227 http://dx.doi.org/10.1073/pnas.2210032119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Ribet, Kenneth A.
Wake, Preston
Another look at rational torsion of modular Jacobians
title Another look at rational torsion of modular Jacobians
title_full Another look at rational torsion of modular Jacobians
title_fullStr Another look at rational torsion of modular Jacobians
title_full_unstemmed Another look at rational torsion of modular Jacobians
title_short Another look at rational torsion of modular Jacobians
title_sort another look at rational torsion of modular jacobians
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565053/
https://www.ncbi.nlm.nih.gov/pubmed/36191227
http://dx.doi.org/10.1073/pnas.2210032119
work_keys_str_mv AT ribetkennetha anotherlookatrationaltorsionofmodularjacobians
AT wakepreston anotherlookatrationaltorsionofmodularjacobians