Cargando…

Mussel-Inspired Surface Modification of α-Zirconium Phosphate Nanosheets for Anchoring Efficient and Reusable Ultrasmall Au Nanocatalysts

The shortage of powerful functionalities on scalable α-zirconium phosphate (ZrP) materials blocks the facile preparation of highly dispersed and immobilized metal nanocatalysts. We herein present a mild and facile mussel-inspired strategy based on polydopamine (PDA) for the surface modification of Z...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Limiao, Wen, Yi, Li, Lixi, Tan, Ying, Yang, Peng, Liang, Yaoheng, Xu, Yisheng, Hu, Huawen, Xu, Yonghang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565343/
https://www.ncbi.nlm.nih.gov/pubmed/36234467
http://dx.doi.org/10.3390/nano12193339
Descripción
Sumario:The shortage of powerful functionalities on scalable α-zirconium phosphate (ZrP) materials blocks the facile preparation of highly dispersed and immobilized metal nanocatalysts. We herein present a mild and facile mussel-inspired strategy based on polydopamine (PDA) for the surface modification of ZrP, and hence, the generation of powerful functionalities at a high density for the straightforward reduction of chloroauric acid to Au nanoparticles (AuNPs) and the immobilization of AuNPs. The resulting ternary ZrP@PDA/Au exhibited ultra-small AuNPs with a particle size of around 6.5 nm, as estimated based on TEM images. Consequently, the ZrP@PDA/Au catalyst showed significant activity in the catalytic conversion of 4-nitrophenol (4NP) to 4-aminophenol (4AP), a critical transformation reaction in turning the hazard into valuable intermediates for drug synthesis. The PDA was demonstrated to play a critical role in the fabrication of the highly efficient ZrP@PDA/Au catalyst, far outperforming the ZrP/Au counterpart. The turnover frequency (TOF) achieved by the ZrP@PDA/Au reached as high as 38.10 min(−1), much higher than some reported noble metal-based catalysts. In addition, the ZrP@PDA/Au showed high stability and reusability, of which the catalytic efficiency was not significantly degraded after prolonged storage in solution.