Cargando…
Binding of the transcription factor MYC2-like to the ABRE of the OsCYP2 promoter enhances salt tolerance in Oryza sativa
Cyclophilins, a type of peptidyl-prolyl cis-trans isomerase, function as important molecular chaperones in a series of biological processes. However, the expression pattern and signal transduction pathway of cyclophilins are still unclear. Here, we showed that the promoter of OsCYP2 could function a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565382/ https://www.ncbi.nlm.nih.gov/pubmed/36240213 http://dx.doi.org/10.1371/journal.pone.0276075 |
Sumario: | Cyclophilins, a type of peptidyl-prolyl cis-trans isomerase, function as important molecular chaperones in a series of biological processes. However, the expression pattern and signal transduction pathway of cyclophilins are still unclear. Here, we showed that the promoter of OsCYP2 could function as a tissue-specific promoter by GUS staining. Moreover, we found that the promoter sequence contained not only core elements but also inducible elements. Then, the ABA-responsive element was used for cDNA library screening, and the transcription factor MYC2-like was identified by a yeast one-hybrid assay and confirmed through an electrophoretic mobility shift assay. Furthermore, the relative expression showed that MYC2-like was induced by abscisic acid. In addition, MYC2-like overexpression enhanced salt tolerance in transformants and partially restored the cyp2-RNAi line. In summary, we explored a novel transcriptional signal mediated by MYC2-like, a potential regulator of salt stress-related physiological processes in rice. |
---|