Cargando…
Synthesis and Characterization of Novel Sprayed Ag-Doped Quaternary Cu(2)MgSnS(4) Thin Film for Antibacterial Application
In this work, the effects of silver doping with different Ag/(Ag + Cu) ratios (i.e., 2%, 5% and 10% at.% in the spray solution) on the structural, morphological, optical, electrical and antibacterial properties of Cu(2)MgSnS(4) (CMTS) thin film grown by spray pyrolysis have been studied. The X-ray d...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565582/ https://www.ncbi.nlm.nih.gov/pubmed/36234587 http://dx.doi.org/10.3390/nano12193459 |
Sumario: | In this work, the effects of silver doping with different Ag/(Ag + Cu) ratios (i.e., 2%, 5% and 10% at.% in the spray solution) on the structural, morphological, optical, electrical and antibacterial properties of Cu(2)MgSnS(4) (CMTS) thin film grown by spray pyrolysis have been studied. The X-ray diffraction (XRD) and selected area electron diffraction (SAED) results have shown that the kesterite phase of CMTS thin films has a maximum crystallite size of about 19.60 nm for 5% Ag/(Ag + Cu). Scanning electron microscopy (SEM) images have shown spherical grain shapes. The transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) microscopy observations confirmed the intrinsic reticular planes of CMTS thin film with (112) as a preferred orientation and interplanar spacing value of 3.1 Å. The optical properties showed high absorbance and an absorption coefficient of about 10(4) cm(−1) in the visible region with an optical band gap energy of 1.51 eV. Impedance analysis spectroscopy demonstrated good electrical properties of the CMTS film obtained using 5% Ag/(Ag + Cu). The antibacterial activity of the undoped and Ag-doped particles of CMTS obtained using 5% Ag/(Ag + Cu) against different strains of pathogenic bacteria was tested using the agar well diffusion method. These results showed a significant antibacterial activity of the Ag-doped CMTS particle, which was much higher than the undoped CMTS particles. These experimental findings may open new practices for the Ag-doped CMTS compound, especially the one obtained using 5% Ag/(Ag + Cu), in antibacterial application. |
---|