Cargando…
Radical-Scavenging Activatable and Robust Polymeric Binder Based on Poly(acrylic acid) Cross-Linked with Tannic Acid for Silicon Anode of Lithium Storage System
The design of a novel binder is required for high-capacity silicon anodes, which typically undergo significant changes during charge/discharge cycling. Hence, in this study, a stable network structure was formed by combining tannic acid (TAc), which can be cross-linked, and poly(acrylic acid)(PAA) a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565638/ https://www.ncbi.nlm.nih.gov/pubmed/36234566 http://dx.doi.org/10.3390/nano12193437 |
Sumario: | The design of a novel binder is required for high-capacity silicon anodes, which typically undergo significant changes during charge/discharge cycling. Hence, in this study, a stable network structure was formed by combining tannic acid (TAc), which can be cross-linked, and poly(acrylic acid)(PAA) as an effective binder for a silicon (Si) anode. TAc is a phenolic compound and representative substance with antioxidant properties. Owing to the antioxidant ability of the C-PAA/TAc binder, side reactions during the cycling were suppressed during the formation of an appropriate solid–electrolyte interface layer. The results showed that the expansion of a silicon anode was suppressed compared with that of a conventional PAA binder. This study demonstrates that cross-linking and antioxidant capability facilitate binding and provides insights into the behavior of binders for silicon anodes. The Si anode with the C-PAA/TAc binder exhibited significantly improved cycle stability and higher Coulombic efficiency in comparison to the Si anode with well-established PAA binders. The C-PAA/TAc binder demonstrated a capacity of 1833 mA h g(−1)(Si) for 100 cycles, which is higher than that of electrodes fabricated using the conventional PAA binder. Therefore, the C-PAA/TAc binder offers better electrochemical performance. |
---|