Cargando…
Assessing the Nationwide COVID-19 Risk in Mexico through the Lens of Comorbidity by an XGBoost-Based Logistic Regression Model
The outbreak of the new COVID-19 disease is a serious health problem that has affected a large part of the world population, especially older adults and people who suffer from a previous comorbidity. In this work, we proposed a classifier model that allows for deciding whether or not a patient might...
Autores principales: | Venancio-Guzmán, Sonia, Aguirre-Salado, Alejandro Ivan, Soubervielle-Montalvo, Carlos, Jiménez-Hernández, José del Carmen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565716/ https://www.ncbi.nlm.nih.gov/pubmed/36231290 http://dx.doi.org/10.3390/ijerph191911992 |
Ejemplares similares
-
Developing a Hierarchical Model for the Spatial Analysis of PM(10) Pollution Extremes in the Mexico City Metropolitan Area
por: Aguirre-Salado, Alejandro Ivan, et al.
Publicado: (2017) -
Non-contact screening system based for COVID-19 on XGBoost and logistic regression
por: Dong, Chunjiao, et al.
Publicado: (2022) -
Predicting ICU Mortality in Rheumatic Heart Disease: Comparison of XGBoost and Logistic Regression
por: Xu, Yixian, et al.
Publicado: (2022) -
XGBoost algorithm and logistic regression to predict the postoperative 5-year outcome in patients with glioma
por: Yan, Zhiqiang, et al.
Publicado: (2022) -
Prediction Model of Bone Marrow Infiltration in Patients with Malignant Lymphoma Based on Logistic Regression and XGBoost Algorithm
por: Huang, Yongfen, et al.
Publicado: (2022)