Cargando…
Deep Learning Models for Predicting Gas Adsorption Capacity of Nanomaterials
Metal–organic frameworks (MOFs), a class of porous nanomaterials, have been widely used in gas adsorption-based applications due to their high porosities and chemical tunability. To facilitate the discovery of high-performance MOFs for different applications, a variety of machine learning models hav...
Autores principales: | Guo, Wenjing, Liu, Jie, Dong, Fan, Chen, Ru, Das, Jayanti, Ge, Weigong, Xu, Xiaoming, Hong, Huixiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9565823/ https://www.ncbi.nlm.nih.gov/pubmed/36234502 http://dx.doi.org/10.3390/nano12193376 |
Ejemplares similares
-
Carbon nanomaterials for gas adsorption
por: Terranova, Maria Letizia
Publicado: (2012) -
Nanomaterial Databases: Data Sources for Promoting Design and Risk Assessment of Nanomaterials
por: Ji, Zuowei, et al.
Publicado: (2021) -
Elucidation of Agonist and Antagonist Dynamic Binding Patterns in ER-α by Integration of Molecular Docking, Molecular Dynamics Simulations and Quantum Mechanical Calculations
por: Sakkiah, Sugunadevi, et al.
Publicado: (2021) -
Structural Changes Due to Antagonist Binding in Ligand Binding Pocket of Androgen Receptor Elucidated Through Molecular Dynamics Simulations
por: Sakkiah, Sugunadevi, et al.
Publicado: (2018) -
Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods
por: Guo, Wenjing, et al.
Publicado: (2019)