Cargando…
How to Efficiently Reduce the Carbon Intensity of the Heavy Industry in China? Using Quantile Regression Approach
This decoupling between carbon dioxide emissions and the heavy industry is one of the main topics of government managers. This paper uses the quantile regression approach to investigate the carbon intensity of China’s heavy industry, based on 2005–2019 panel data. The main findings are as follows: (...
Autor principal: | Xu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566165/ https://www.ncbi.nlm.nih.gov/pubmed/36232164 http://dx.doi.org/10.3390/ijerph191912865 |
Ejemplares similares
-
How Air Quality Affect Health Industry Stock Returns: New Evidence From the Quantile-on-Quantile Regression
por: Liu, Lu, et al.
Publicado: (2021) -
The dynamics of carbon on green energy equity investment: quantile-on-quantile and quantile coherency approaches
por: Mo, Bin, et al.
Publicado: (2021) -
Quantile regression
por: Koenker, Roger
Publicado: (2005) -
A nonparametric approach for quantile regression
por: Huang, Mei Ling, et al.
Publicado: (2018) -
How Does Industrial Waste Gas Emission Affect Health Care Expenditure in Different Regions of China: An Application of Bayesian Quantile Regression
por: Xu, Xiaocang, et al.
Publicado: (2019)