Cargando…

Effect of COVID-19 Vaccines on Reducing the Risk of Long COVID in the Real World: A Systematic Review and Meta-Analysis

The coronavirus disease 2019 (COVID-19) is still in a global pandemic state. Some studies have reported that COVID-19 vaccines had a protective effect against long COVID. However, the conclusions of the studies on the effect of COVID-19 vaccines on long COVID were not consistent. This study aimed to...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Peng, Liu, Jue, Liu, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566528/
https://www.ncbi.nlm.nih.gov/pubmed/36231717
http://dx.doi.org/10.3390/ijerph191912422
Descripción
Sumario:The coronavirus disease 2019 (COVID-19) is still in a global pandemic state. Some studies have reported that COVID-19 vaccines had a protective effect against long COVID. However, the conclusions of the studies on the effect of COVID-19 vaccines on long COVID were not consistent. This study aimed to systematically review relevant studies in the real world, and performed a meta-analysis to explore the relationship between vaccination and long COVID. We systematically searched PubMed, Embase, Web of science, and ScienceDirect from inception to 19 September 2022. The PICO (P: patients; I: intervention; C: comparison; O: outcome) was as follows: patients diagnosed with COVID-19 (P); vaccination with COVID-19 vaccines (I); the patients were divided into vaccinated and unvaccinated groups (C); the outcomes were the occurrence of long COVID, as well as the various symptoms of long COVID (O). A fixed-effect model and random-effects model were chosen based on the heterogeneity between studies in order to pool the effect value. The results showed that the vaccinated group had a 29% lower risk of developing long COVID compared with the unvaccinated group (RR = 0.71, 95% CI: 0.58–0.87, p < 0.01). Compared with patients who were not vaccinated, vaccination showed its protective effect in patients vaccinated with two doses (RR = 0.83, 95% CI: 0.74–0.94, p < 0.01), but not one dose (RR = 0.83, 95% CI: 0.65–1.07, p = 0.14). In addition, vaccination was effective against long COVD in patients either vaccinated before SARS-CoV-2 infection/COVID-19 (RR = 0.82, 95% CI: 0.74–0.91, p < 0.01) or vaccinated after SARS-CoV-2 infection/COVID-19 (RR = 0.83, 95% CI: 0.74–0.92, p < 0.01). For long COVID symptoms, vaccination reduced the risk of cognitive dysfunction/symptoms, kidney diseases/problems, myalgia, and sleeping disorders/problems sleeping. Our study shows that COVID-19 vaccines had an effect on reducing the risk of long COVID in patients vaccinated before or after SARS-CoV-2 infection/COVID-19. We suggest that the vaccination rate should be improved as soon as possible, especially for a complete vaccination course. There should be more studies to explore the basic mechanisms of the protective effect of COVID-19 vaccines on long COVID in the future.