Cargando…
Predicting Heavy Metal Concentrations in Shallow Aquifer Systems Based on Low-Cost Physiochemical Parameters Using Machine Learning Techniques
Monitoring ex-situ water parameters, namely heavy metals, needs time and laboratory work for water sampling and analytical processes, which can retard the response to ongoing pollution events. Previous studies have successfully applied fast modeling techniques such as artificial intelligence algorit...
Autores principales: | Huynh, Thi-Minh-Trang, Ni, Chuen-Fa, Su, Yu-Sheng, Nguyen, Vo-Chau-Ngan, Lee, I-Hsien, Lin, Chi-Ping, Nguyen, Hoang-Hiep |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566676/ https://www.ncbi.nlm.nih.gov/pubmed/36231480 http://dx.doi.org/10.3390/ijerph191912180 |
Ejemplares similares
-
Post-traumatic stress disorder, anxiety, depression and related factors among COVID-19 patients during the fourth wave of the pandemic in Vietnam
por: Nguyen, Hoang Bac, et al.
Publicado: (2022) -
Intrinsic vulnerability assessment of shallow aquifers of the sedimentary basin of southwestern Nigeria
por: Oke, Saheed A., et al.
Publicado: (2018) -
Isotopic Characterization of Sulfate in a Shallow Aquifer Impacted by Agricultural Fertilizer
por: Spoelstra, John, et al.
Publicado: (2021) -
Paired RNA Radiocarbon and Sequencing Analyses Indicate the Importance of Autotrophy in a Shallow Alluvial Aquifer
por: Mailloux, Brian J., et al.
Publicado: (2019) -
Extract antibody and antigen names from biomedical literature
por: Dinh, Thuy Trang, et al.
Publicado: (2022)