Cargando…

The TIMEBASE Study: IdenTifying dIgital bioMarkers of illnEss activity in BipolAr diSordEr. Preliminary results

INTRODUCTION: Mood episodes in bipolar disorder (BD) are still identified with subjective retrospective reports and scales. Digital biomarkers, such as actigraphy, heart rate variability, or ElectroDermal activity (EDA) have demonstrated their potential to objectively capture illness activity. OBJEC...

Descripción completa

Detalles Bibliográficos
Autores principales: Anmella, G., Mas, A., Pacchiarotti, I., Fernández, T., Bastidas, A., Agasi, I., Garriga, M., Verdolini, N., Arbelo, N., Nicolás, D., Ruiz, V., Valentí, M., Murru, A., Vieta, E., Solanes, A., Corponi, F., Li, B., Hidalgo-Mazzei, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566946/
http://dx.doi.org/10.1192/j.eurpsy.2022.575
_version_ 1784809278375198720
author Anmella, G.
Mas, A.
Pacchiarotti, I.
Fernández, T.
Bastidas, A.
Agasi, I.
Garriga, M.
Verdolini, N.
Arbelo, N.
Nicolás, D.
Ruiz, V.
Valentí, M.
Murru, A.
Vieta, E.
Solanes, A.
Corponi, F.
Li, B.
Hidalgo-Mazzei, D.
author_facet Anmella, G.
Mas, A.
Pacchiarotti, I.
Fernández, T.
Bastidas, A.
Agasi, I.
Garriga, M.
Verdolini, N.
Arbelo, N.
Nicolás, D.
Ruiz, V.
Valentí, M.
Murru, A.
Vieta, E.
Solanes, A.
Corponi, F.
Li, B.
Hidalgo-Mazzei, D.
author_sort Anmella, G.
collection PubMed
description INTRODUCTION: Mood episodes in bipolar disorder (BD) are still identified with subjective retrospective reports and scales. Digital biomarkers, such as actigraphy, heart rate variability, or ElectroDermal activity (EDA) have demonstrated their potential to objectively capture illness activity. OBJECTIVES: To identify physiological digital signatures of illness activity during acute episodes of BD compared to euthymia and healthy controls (HC) using a novel wearable device (Empatica´s E4). METHODS: A pragmatic exploratory study. The sample will include 3 independent groups totalizing 60 individuals: 36 BD inpatients admitted due to severe acute episodes of mania (N=12), depression (N=12), and mixed features (N=12), will wear the E4-device at four timepoints: the acute phase (T0), treatment response (T1), symptoms remission (T2) and during euthymia (T3; outpatient follow-up). 12 BD euthymic outpatients and 12 HC will be asked to wear the E4-device once. Data pre-processing included average downsampling, channel time-alignment in 2D segments, 3D-array stacking of segments, and random shuffling for training/validation sets. Finally, machine learning algorithms will be applied. RESULTS: A total of 10 patients and 5 HC have been recruited so far. The preliminary results follow the first differences between the physiological digital biomarkers between manic and depressive episodes. 3 fully connected layers with 32 hidden units, ectified linear activation function (ReLU) activation, 25% dropout rate, significantly differentiated a manic from a depressive episode at different timepoints (T0, T1, T2). CONCLUSIONS: New wearables technologies might provide objective decision-support parameters based on digital signatures of symptoms that would allow tailored treatments and early identification of symptoms. DISCLOSURE: No significant relationships.
format Online
Article
Text
id pubmed-9566946
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-95669462022-10-17 The TIMEBASE Study: IdenTifying dIgital bioMarkers of illnEss activity in BipolAr diSordEr. Preliminary results Anmella, G. Mas, A. Pacchiarotti, I. Fernández, T. Bastidas, A. Agasi, I. Garriga, M. Verdolini, N. Arbelo, N. Nicolás, D. Ruiz, V. Valentí, M. Murru, A. Vieta, E. Solanes, A. Corponi, F. Li, B. Hidalgo-Mazzei, D. Eur Psychiatry Abstract INTRODUCTION: Mood episodes in bipolar disorder (BD) are still identified with subjective retrospective reports and scales. Digital biomarkers, such as actigraphy, heart rate variability, or ElectroDermal activity (EDA) have demonstrated their potential to objectively capture illness activity. OBJECTIVES: To identify physiological digital signatures of illness activity during acute episodes of BD compared to euthymia and healthy controls (HC) using a novel wearable device (Empatica´s E4). METHODS: A pragmatic exploratory study. The sample will include 3 independent groups totalizing 60 individuals: 36 BD inpatients admitted due to severe acute episodes of mania (N=12), depression (N=12), and mixed features (N=12), will wear the E4-device at four timepoints: the acute phase (T0), treatment response (T1), symptoms remission (T2) and during euthymia (T3; outpatient follow-up). 12 BD euthymic outpatients and 12 HC will be asked to wear the E4-device once. Data pre-processing included average downsampling, channel time-alignment in 2D segments, 3D-array stacking of segments, and random shuffling for training/validation sets. Finally, machine learning algorithms will be applied. RESULTS: A total of 10 patients and 5 HC have been recruited so far. The preliminary results follow the first differences between the physiological digital biomarkers between manic and depressive episodes. 3 fully connected layers with 32 hidden units, ectified linear activation function (ReLU) activation, 25% dropout rate, significantly differentiated a manic from a depressive episode at different timepoints (T0, T1, T2). CONCLUSIONS: New wearables technologies might provide objective decision-support parameters based on digital signatures of symptoms that would allow tailored treatments and early identification of symptoms. DISCLOSURE: No significant relationships. Cambridge University Press 2022-09-01 /pmc/articles/PMC9566946/ http://dx.doi.org/10.1192/j.eurpsy.2022.575 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Abstract
Anmella, G.
Mas, A.
Pacchiarotti, I.
Fernández, T.
Bastidas, A.
Agasi, I.
Garriga, M.
Verdolini, N.
Arbelo, N.
Nicolás, D.
Ruiz, V.
Valentí, M.
Murru, A.
Vieta, E.
Solanes, A.
Corponi, F.
Li, B.
Hidalgo-Mazzei, D.
The TIMEBASE Study: IdenTifying dIgital bioMarkers of illnEss activity in BipolAr diSordEr. Preliminary results
title The TIMEBASE Study: IdenTifying dIgital bioMarkers of illnEss activity in BipolAr diSordEr. Preliminary results
title_full The TIMEBASE Study: IdenTifying dIgital bioMarkers of illnEss activity in BipolAr diSordEr. Preliminary results
title_fullStr The TIMEBASE Study: IdenTifying dIgital bioMarkers of illnEss activity in BipolAr diSordEr. Preliminary results
title_full_unstemmed The TIMEBASE Study: IdenTifying dIgital bioMarkers of illnEss activity in BipolAr diSordEr. Preliminary results
title_short The TIMEBASE Study: IdenTifying dIgital bioMarkers of illnEss activity in BipolAr diSordEr. Preliminary results
title_sort timebase study: identifying digital biomarkers of illness activity in bipolar disorder. preliminary results
topic Abstract
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566946/
http://dx.doi.org/10.1192/j.eurpsy.2022.575
work_keys_str_mv AT anmellag thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT masa thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT pacchiarottii thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT fernandezt thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT bastidasa thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT agasii thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT garrigam thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT verdolinin thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT arbelon thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT nicolasd thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT ruizv thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT valentim thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT murrua thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT vietae thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT solanesa thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT corponif thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT lib thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT hidalgomazzeid thetimebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT anmellag timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT masa timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT pacchiarottii timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT fernandezt timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT bastidasa timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT agasii timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT garrigam timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT verdolinin timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT arbelon timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT nicolasd timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT ruizv timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT valentim timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT murrua timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT vietae timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT solanesa timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT corponif timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT lib timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults
AT hidalgomazzeid timebasestudyidentifyingdigitalbiomarkersofillnessactivityinbipolardisorderpreliminaryresults