Cargando…
Mom2B: a study of perinatal health via smartphone application and machine learning methods
INTRODUCTION: Peripartum depression (PPD) impacts around 12% of women globally and is a leading cause of maternal mortality. However, there are currently no accurate methods in use to identify women at high risk for depressive symptoms on an individual level. An initial study was done to assess the...
Autores principales: | Bilal, A., Bathula, D., Bränn, E., Fransson, E., Virk, J., Papadopoulos, F., Skalkidou, A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568165/ http://dx.doi.org/10.1192/j.eurpsy.2022.1472 |
Ejemplares similares
-
Predicting perinatal health outcomes using smartphone-based digital phenotyping and machine learning in a prospective Swedish cohort (Mom2B): study protocol
por: Bilal, Ayesha M, et al.
Publicado: (2022) -
Predicting women with depressive symptoms postpartum with machine learning methods
por: Andersson, Sam, et al.
Publicado: (2021) -
Longitudinal assessment of inflammatory markers in the peripartum period by depressive symptom trajectory groups
por: Bränn, Emma, et al.
Publicado: (2022) -
The price of privilege: helping mom die at home
por: Beard, Renee
Publicado: (2020) -
Cohort profile: the Biology, Affect, Stress, Imaging and Cognition (BASIC) study on perinatal depression in a population-based Swedish cohort
por: Axfors, Cathrine, et al.
Publicado: (2019)