Cargando…
Grape Leaf Disease Classification Combined with U-Net++ Network and Threshold Segmentation
Applying the method of semantic segmentation to the segmentation of grape leaves is an important method to solve how to segment grape leaves from complex backgrounds. This article uses U-net++ convolutional neural network to segment grape leaves from complex backgrounds using MIOU, PA, and mPA as ev...
Autores principales: | Wang, Guowei, Wang, Jiawei, Wang, Jiaxin, Sun, Yadong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568301/ https://www.ncbi.nlm.nih.gov/pubmed/36248954 http://dx.doi.org/10.1155/2022/1042737 |
Ejemplares similares
-
Retracted: Grape Leaf Disease Classification Combined with U-Net++ Network and Threshold Segmentation
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
U-Net combined with multi-scale attention mechanism for liver segmentation in CT images
por: Wu, Jiawei, et al.
Publicado: (2021) -
A hybrid attention-enhanced DenseNet neural network model based on improved U-Net for rice leaf disease identification
por: Liu, Wufeng, et al.
Publicado: (2022) -
Automatic renal mass segmentation and classification on CT images based on 3D U-Net and ResNet algorithms
por: Zhao, Tongtong, et al.
Publicado: (2023) -
Segmentation and Classification of Glaucoma Using U-Net with Deep Learning Model
por: Sudhan, M. B., et al.
Publicado: (2022)