Cargando…

Articulatory suppression during instruction encoding impedes performance in choice reaction time tasks

Theories of instruction following assume that language contributes to our ability to understand and implement instructions. The two experiments reported here investigated that assumption. Participants (total N = 96) were required to learn a series of novel tasks, with each task consisting of six arb...

Descripción completa

Detalles Bibliográficos
Autores principales: van ’t Wout, Félice, Jarrold, Christopher
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568437/
https://www.ncbi.nlm.nih.gov/pubmed/35524010
http://dx.doi.org/10.3758/s13423-022-02100-5
Descripción
Sumario:Theories of instruction following assume that language contributes to our ability to understand and implement instructions. The two experiments reported here investigated that assumption. Participants (total N = 96) were required to learn a series of novel tasks, with each task consisting of six arbitrary stimulus-response rules. All tasks were preceded by an instruction phase (a visual depiction of the correct stimulus-response rules for each task), during which participants performed a verbal distractor task (articulatory suppression), a non-verbal distractor task (foot tapping) or no distractor task. Additionally, the duration of the instruction phase was varied so that it was either long (60 s) or short (30 s in Experiment 1, or 10 s in Experiment 2). In both experiments participants made more errors when they had performed articulatory suppression during the instruction interval, compared to the foot tapping and no distractor task conditions. Furthermore, Experiment 2 found that this detrimental effect of articulatory suppression was especially pronounced with a very short instruction duration. These findings demonstrate that language plays a crucial role in the encoding of novel task instructions, especially when instructions are encoded under time pressure.