Cargando…
Weighted cylindric partitions
Recently Corteel and Welsh outlined a technique for finding new sum-product identities by using functional relations between generating functions for cylindric partitions and a theorem of Borodin. Here, we extend this framework to include very general product-sides coming from work of Han and Xiong....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568468/ https://www.ncbi.nlm.nih.gov/pubmed/36258801 http://dx.doi.org/10.1007/s10801-022-01156-9 |
Sumario: | Recently Corteel and Welsh outlined a technique for finding new sum-product identities by using functional relations between generating functions for cylindric partitions and a theorem of Borodin. Here, we extend this framework to include very general product-sides coming from work of Han and Xiong. In doing so, we are led to consider structures such as weighted cylindric partitions, symmetric cylindric partitions and weighted skew double-shifted plane partitions. We prove some new identities and obtain new proofs of known identities, including the Göllnitz–Gordon and Little Göllnitz identities as well as some beautiful Schmidt-type identities of Andrews and Paule. |
---|