Cargando…

Cartilage decisively shapes the glenoid concavity and contributes significantly to shoulder stability

PURPOSE: Glenohumeral joint injuries frequently result in shoulder instability. However, the biomechanical effect of cartilage loss on shoulder stability remains unknown. The aim of the current study was to investigate biomechanically the effect of two severity stages of cartilage loss in different...

Descripción completa

Detalles Bibliográficos
Autores principales: Souleiman, F., Zderic, I., Pastor, T., Varga, P., Helfen, T., Richards, G., Gueorguiev, B., Theopold, J., Osterhoff, G., Hepp, P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568486/
https://www.ncbi.nlm.nih.gov/pubmed/35434767
http://dx.doi.org/10.1007/s00167-022-06968-7
Descripción
Sumario:PURPOSE: Glenohumeral joint injuries frequently result in shoulder instability. However, the biomechanical effect of cartilage loss on shoulder stability remains unknown. The aim of the current study was to investigate biomechanically the effect of two severity stages of cartilage loss in different dislocation directions on shoulder stability. METHODS: Joint dislocation was provoked in 11 human cadaveric glenoids for 7 different directions between 3 o'clock (anterior) and 9 o'clock (posterior). Shoulder stability ratio (SSR) and concavity gradient were assessed in three states: intact, 3 mm and 6 mm simulated cartilage loss. The influence of cartilage loss on SSR and concavity gradient was statistically evaluated. RESULTS: Both SSR and concavity gradient decreased significantly between intact state and 6 mm cartilage loss in every dislocation direction (p ≤ 0.038), except concavity gradient in 4 o'clock direction. Thereby, anterior–inferior dislocation directions were associated with the highest decrease in both SSR and concavity gradient of up to 59.0% and 49.4%, respectively, being significantly bigger for SSR compared with all other dislocation directions (p ≤ 0.040). Correlations between concavity gradient and SSR for pooled dislocation directions were significant in each separate specimen's state (p < 0.001). CONCLUSION: From a biomechanical perspective, articular cartilage of the glenoid contributes significantly to the concavity gradient, correlating strongly with the associated loss in glenohumeral joint stability. The biggest effect of cartilage loss is observed in the most frequently occurring anterior–inferior dislocation directions, suggesting that surgical interventions to restore cartilage's surface and concavity should be considered for recurrent shoulder dislocations in presence of cartilage loss. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00167-022-06968-7.