Cargando…
Deep learning accelerates whole slide imaging for next-generation digital pathology applications
Deep learning demonstrates the ability to significantly increase the scanning speed of whole slide imaging in histology. This transformative solution can be used to further accelerate the adoption of digital pathology.
Autores principales: | Rivenson, Yair, Ozcan, Aydogan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568604/ https://www.ncbi.nlm.nih.gov/pubmed/36241615 http://dx.doi.org/10.1038/s41377-022-00999-y |
Ejemplares similares
-
Deep learning in holography and coherent imaging
por: Rivenson, Yair, et al.
Publicado: (2019) -
PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning
por: Rivenson, Yair, et al.
Publicado: (2019) -
Off-axis holography and micro-optics improve lab-on-a-chip imaging
por: Ballard, Zachary S, et al.
Publicado: (2017) -
Phase recovery and holographic image reconstruction using deep learning in neural networks
por: Rivenson, Yair, et al.
Publicado: (2018) -
Reproducibility of deep learning in digital pathology whole slide image analysis
por: Fell, Christina, et al.
Publicado: (2022)