Cargando…
Improving remote material classification ability with thermal imagery
Material recognition using optical sensors is a key enabler technology in the field of automation. Nowadays, in the age of deep learning, the challenge shifted from (manual) feature engineering to collecting big data. State of the art recognition approaches are based on deep neural networks employin...
Autores principales: | Großmann, Willi, Horn, Helena, Niggemann, Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568652/ https://www.ncbi.nlm.nih.gov/pubmed/36241759 http://dx.doi.org/10.1038/s41598-022-21588-4 |
Ejemplares similares
-
ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery
por: Li, Na, et al.
Publicado: (2018) -
Measuring creative imagery abilities
por: Jankowska, Dorota M., et al.
Publicado: (2015) -
Research on remote sensing classification of fruit trees based on Sentinel-2 multi-temporal imageries
por: Zhou, Xin-Xing, et al.
Publicado: (2022) -
Are Motor Imagery Ability scores related to cortical activity during gait imagery?
por: Putzolu, Martina, et al.
Publicado: (2023) -
A Simple Semi-Automatic Approach for Land Cover Classification from Multispectral Remote Sensing Imagery
por: Jiang, Dong, et al.
Publicado: (2012)