Cargando…

Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer

Serum tumor markers acquired through a blood draw are known to reflect tumor activity. Their non-invasive nature allows for more frequent testing compared to traditional imaging methods used for response evaluations. Our study aims to compare nine prediction methods to accurately, and with a low fal...

Descripción completa

Detalles Bibliográficos
Autores principales: van Delft, Frederik A., Schuurbiers, Milou, Muller, Mirte, Burgers, Sjaak A., van Rossum, Huub H., IJzerman, Maarten J., Koffijberg, Hendrik, van den Heuvel, Michel M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568827/
https://www.ncbi.nlm.nih.gov/pubmed/36254284
http://dx.doi.org/10.1016/j.heliyon.2022.e10932
_version_ 1784809726991663104
author van Delft, Frederik A.
Schuurbiers, Milou
Muller, Mirte
Burgers, Sjaak A.
van Rossum, Huub H.
IJzerman, Maarten J.
Koffijberg, Hendrik
van den Heuvel, Michel M.
author_facet van Delft, Frederik A.
Schuurbiers, Milou
Muller, Mirte
Burgers, Sjaak A.
van Rossum, Huub H.
IJzerman, Maarten J.
Koffijberg, Hendrik
van den Heuvel, Michel M.
author_sort van Delft, Frederik A.
collection PubMed
description Serum tumor markers acquired through a blood draw are known to reflect tumor activity. Their non-invasive nature allows for more frequent testing compared to traditional imaging methods used for response evaluations. Our study aims to compare nine prediction methods to accurately, and with a low false positive rate, predict progressive disease despite treatment (i.e. non-response) using longitudinal tumor biomarker data. Bi-weekly measurements of CYFRA, CA-125, CEA, NSE, and SCC were available from a cohort of 412 advanced stage non-small cell lung cancer (NSCLC) patients treated up to two years with immune checkpoint inhibitors. Serum tumor marker measurements from the first six weeks after treatment initiation were used to predict treatment response at 6 months. Nine models with varying complexity were evaluated in this study, showing how longitudinal biomarker data can be used to predict non-response to immunotherapy in NSCLC patients.
format Online
Article
Text
id pubmed-9568827
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-95688272022-10-16 Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer van Delft, Frederik A. Schuurbiers, Milou Muller, Mirte Burgers, Sjaak A. van Rossum, Huub H. IJzerman, Maarten J. Koffijberg, Hendrik van den Heuvel, Michel M. Heliyon Research Article Serum tumor markers acquired through a blood draw are known to reflect tumor activity. Their non-invasive nature allows for more frequent testing compared to traditional imaging methods used for response evaluations. Our study aims to compare nine prediction methods to accurately, and with a low false positive rate, predict progressive disease despite treatment (i.e. non-response) using longitudinal tumor biomarker data. Bi-weekly measurements of CYFRA, CA-125, CEA, NSE, and SCC were available from a cohort of 412 advanced stage non-small cell lung cancer (NSCLC) patients treated up to two years with immune checkpoint inhibitors. Serum tumor marker measurements from the first six weeks after treatment initiation were used to predict treatment response at 6 months. Nine models with varying complexity were evaluated in this study, showing how longitudinal biomarker data can be used to predict non-response to immunotherapy in NSCLC patients. Elsevier 2022-10-04 /pmc/articles/PMC9568827/ /pubmed/36254284 http://dx.doi.org/10.1016/j.heliyon.2022.e10932 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
van Delft, Frederik A.
Schuurbiers, Milou
Muller, Mirte
Burgers, Sjaak A.
van Rossum, Huub H.
IJzerman, Maarten J.
Koffijberg, Hendrik
van den Heuvel, Michel M.
Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer
title Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer
title_full Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer
title_fullStr Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer
title_full_unstemmed Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer
title_short Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer
title_sort modeling strategies to analyse longitudinal biomarker data: an illustration on predicting immunotherapy non-response in non-small cell lung cancer
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568827/
https://www.ncbi.nlm.nih.gov/pubmed/36254284
http://dx.doi.org/10.1016/j.heliyon.2022.e10932
work_keys_str_mv AT vandelftfrederika modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer
AT schuurbiersmilou modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer
AT mullermirte modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer
AT burgerssjaaka modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer
AT vanrossumhuubh modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer
AT ijzermanmaartenj modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer
AT koffijberghendrik modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer
AT vandenheuvelmichelm modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer