Cargando…
Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer
Serum tumor markers acquired through a blood draw are known to reflect tumor activity. Their non-invasive nature allows for more frequent testing compared to traditional imaging methods used for response evaluations. Our study aims to compare nine prediction methods to accurately, and with a low fal...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568827/ https://www.ncbi.nlm.nih.gov/pubmed/36254284 http://dx.doi.org/10.1016/j.heliyon.2022.e10932 |
_version_ | 1784809726991663104 |
---|---|
author | van Delft, Frederik A. Schuurbiers, Milou Muller, Mirte Burgers, Sjaak A. van Rossum, Huub H. IJzerman, Maarten J. Koffijberg, Hendrik van den Heuvel, Michel M. |
author_facet | van Delft, Frederik A. Schuurbiers, Milou Muller, Mirte Burgers, Sjaak A. van Rossum, Huub H. IJzerman, Maarten J. Koffijberg, Hendrik van den Heuvel, Michel M. |
author_sort | van Delft, Frederik A. |
collection | PubMed |
description | Serum tumor markers acquired through a blood draw are known to reflect tumor activity. Their non-invasive nature allows for more frequent testing compared to traditional imaging methods used for response evaluations. Our study aims to compare nine prediction methods to accurately, and with a low false positive rate, predict progressive disease despite treatment (i.e. non-response) using longitudinal tumor biomarker data. Bi-weekly measurements of CYFRA, CA-125, CEA, NSE, and SCC were available from a cohort of 412 advanced stage non-small cell lung cancer (NSCLC) patients treated up to two years with immune checkpoint inhibitors. Serum tumor marker measurements from the first six weeks after treatment initiation were used to predict treatment response at 6 months. Nine models with varying complexity were evaluated in this study, showing how longitudinal biomarker data can be used to predict non-response to immunotherapy in NSCLC patients. |
format | Online Article Text |
id | pubmed-9568827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95688272022-10-16 Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer van Delft, Frederik A. Schuurbiers, Milou Muller, Mirte Burgers, Sjaak A. van Rossum, Huub H. IJzerman, Maarten J. Koffijberg, Hendrik van den Heuvel, Michel M. Heliyon Research Article Serum tumor markers acquired through a blood draw are known to reflect tumor activity. Their non-invasive nature allows for more frequent testing compared to traditional imaging methods used for response evaluations. Our study aims to compare nine prediction methods to accurately, and with a low false positive rate, predict progressive disease despite treatment (i.e. non-response) using longitudinal tumor biomarker data. Bi-weekly measurements of CYFRA, CA-125, CEA, NSE, and SCC were available from a cohort of 412 advanced stage non-small cell lung cancer (NSCLC) patients treated up to two years with immune checkpoint inhibitors. Serum tumor marker measurements from the first six weeks after treatment initiation were used to predict treatment response at 6 months. Nine models with varying complexity were evaluated in this study, showing how longitudinal biomarker data can be used to predict non-response to immunotherapy in NSCLC patients. Elsevier 2022-10-04 /pmc/articles/PMC9568827/ /pubmed/36254284 http://dx.doi.org/10.1016/j.heliyon.2022.e10932 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article van Delft, Frederik A. Schuurbiers, Milou Muller, Mirte Burgers, Sjaak A. van Rossum, Huub H. IJzerman, Maarten J. Koffijberg, Hendrik van den Heuvel, Michel M. Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer |
title | Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer |
title_full | Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer |
title_fullStr | Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer |
title_full_unstemmed | Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer |
title_short | Modeling strategies to analyse longitudinal biomarker data: An illustration on predicting immunotherapy non-response in non-small cell lung cancer |
title_sort | modeling strategies to analyse longitudinal biomarker data: an illustration on predicting immunotherapy non-response in non-small cell lung cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568827/ https://www.ncbi.nlm.nih.gov/pubmed/36254284 http://dx.doi.org/10.1016/j.heliyon.2022.e10932 |
work_keys_str_mv | AT vandelftfrederika modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer AT schuurbiersmilou modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer AT mullermirte modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer AT burgerssjaaka modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer AT vanrossumhuubh modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer AT ijzermanmaartenj modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer AT koffijberghendrik modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer AT vandenheuvelmichelm modelingstrategiestoanalyselongitudinalbiomarkerdataanillustrationonpredictingimmunotherapynonresponseinnonsmallcelllungcancer |