Cargando…

Recent advances on air heating system of cabin for pure electric vehicles: A review

Due to the environmental protection and energy shortage, the electric vehicles (EV) is gradually replacing traditional fuel vehicles. EV generally use more energy for air conditioning system, especially EV have almost no waste heat from engine to be discharged to the passenger compartment to achieve...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Dazhang, Huo, Yilin, Zhang, Qing, Xie, Jing, Yang, Zhikang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568831/
https://www.ncbi.nlm.nih.gov/pubmed/36254280
http://dx.doi.org/10.1016/j.heliyon.2022.e11032
Descripción
Sumario:Due to the environmental protection and energy shortage, the electric vehicles (EV) is gradually replacing traditional fuel vehicles. EV generally use more energy for air conditioning system, especially EV have almost no waste heat from engine to be discharged to the passenger compartment to achieve thermal comfort in heating condition. The energy consumption of the heating system for EV will decrease the maximum mileage. Therefore, the energy saving technology for heating system is developing and applied for EV. The article introduced the advance of conventional and emerging heating system for the EV. The positive temperature coefficient (PTC) heater is a convenient heating method used in EV, but PTC heater has some defects such as low efficiency. The heat pump (HP) system is gradually replacing PTC. However, HP has various problems to be overcome, such as the heating capacity and efficiency in low temperature environment. In addition, other novel technologies are proposed to reduce the energy consumption. This article reviews the literature of novel heating methods for EV, introduces adsorption air conditioning systems (AAC), fuel combustion (FC), heat storage (HS), waste heat recovery (WHR), thermoelectric effect (TE) and magnetocaloric effect (ME). © 2017 Elsevier Inc. All rights reserved.