Cargando…
On computational analysis of nonlinear regression models addressing heteroscedasticity and autocorrelation issues: An application to COVID-19 data
This paper develops a method for nonlinear regression models estimation that is robust to heteroscedasticity and autocorrelation of errors. Using nonlinear least squares estimation, four popular growth models (Exponential, Gompertz, Verhulst, and Weibull) were computed. Some assumptions on the error...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568860/ https://www.ncbi.nlm.nih.gov/pubmed/36254279 http://dx.doi.org/10.1016/j.heliyon.2022.e11057 |