Cargando…
On computational analysis of nonlinear regression models addressing heteroscedasticity and autocorrelation issues: An application to COVID-19 data
This paper develops a method for nonlinear regression models estimation that is robust to heteroscedasticity and autocorrelation of errors. Using nonlinear least squares estimation, four popular growth models (Exponential, Gompertz, Verhulst, and Weibull) were computed. Some assumptions on the error...
Autores principales: | Atchadé, Mintodê Nicodème, Tchanati P., Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568860/ https://www.ncbi.nlm.nih.gov/pubmed/36254279 http://dx.doi.org/10.1016/j.heliyon.2022.e11057 |
Ejemplares similares
-
Overview and cross-validation of COVID-19 forecasting univariate models
por: Atchadé, Mintodê Nicodème, et al.
Publicado: (2022) -
The influence of passenger air traffic on the spread of COVID-19 in the world
por: Sokadjo, Yves Morel, et al.
Publicado: (2020) -
Modeling the effects of preventive measures and vaccination on the COVID-19 spread in Benin Republic with optimal control
por: Agossou, Onésime, et al.
Publicado: (2021) -
Forecasting and change point test for nonlinear heteroscedastic time series based on support vector regression
por: Wang, HsinKai, et al.
Publicado: (2022) -
Cross-Validation Comparison of COVID-19 Forecast Models
por: Atchadé, Mintodê Nicodème, et al.
Publicado: (2021)