Cargando…
An optimized protocol for assessing changes in mouse whole-brain activity using opto-fMRI
Functional magnetic resonance imaging (fMRI) in mouse brain, paired with spatially and temporally defined manipulations, offers a powerful tool to causally explain the effect of specific neuronal activity on brain network dynamics. Here, we present an optimized protocol to measure cell-type-specific...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568887/ https://www.ncbi.nlm.nih.gov/pubmed/36240060 http://dx.doi.org/10.1016/j.xpro.2022.101761 |
Sumario: | Functional magnetic resonance imaging (fMRI) in mouse brain, paired with spatially and temporally defined manipulations, offers a powerful tool to causally explain the effect of specific neuronal activity on brain network dynamics. Here, we present an optimized protocol to measure cell-type-specific contributions to changes in whole-brain dynamics in mice using optogenetics (opto)-fMRI. This protocol details the injection of ChR2-expressing AAV, the implantation of optical fiber, the steps to perform opto-BOLD (blood-oxygenation-level-dependent) fMRI recording, and data analysis. For complete details on the use and execution of this protocol, please refer to Grimm et al. (2021). |
---|